[IOI2007]训练路径
Description
Input
Output
Sample Input
2 1 0
3 2 0
4 3 0
5 4 0
1 3 2
3 5 2
2 4 5
2 5 1
Sample Output
HINT
首先如果一条边的两个点在树上的路径长度为奇数,那么这条边肯定要删掉。
那么我们可以发现,这时存在偶环的充要条件就是一个环经过了任意两条非树边。
因为两个奇环通过公共边拼在一起,再把公共边挖掉,肯定是一个偶环。
所以这道题的限制就是不能出现这种情况,也就是说我们需要留下一棵仙人掌。
转化一下,改为求总边权减去最大留下的边权
于是定义$f[i][S]$表示i点,不考虑S集合的儿子
对于一个以i为LCA的非树边,如果都不留
那么$f[i][S]=∑f[son][0]*[S不含son]$
如果要选择边(u,v),那么u->i和v->i上不能与其他非树边形成的环有公共边
答案由三部分组成:
1.u和v的子树,无限制,取$f[u][0]$,$f[v][0]$
2.u(或v)->i路径上求出每个点不考虑它到u(或v)的儿子的方案和
$\sum_{a=u}f[a][S]$
S为不考虑该点到u(或v)
3.i点不考虑到u的儿子son1,到v的儿子son2
$f[i][S]$ S为没有考虑son1和son2的状态
复杂度$O(m*2^{10}+m*n)$
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std;
typedef long long lol;
struct Edge
{
int u,v,d;
}e[];
struct Node
{
int next,to;
}edge[];
vector<int>h[];
int f[][],son[],n,m,ans,LCA;
int top[],head[],num,tot,dep[],dfn[],idf[],id[],fa[],size[];
void add(int u,int v)
{
num++;
edge[num].next=head[u];
head[u]=num;
edge[num].to=v;
}
void dfs1(int x,int pa)
{int i;
fa[x]=pa;
size[x]=;
dep[x]=dep[pa]+;
for (i=head[x];i;i=edge[i].next)
{
int v=edge[i].to;
if (v==pa) continue;
dfs1(v,x);
size[x]+=size[v];
if (size[v]>size[son[x]]) son[x]=v;
}
}
void dfs2(int x,int pa,int tp)
{int i;
top[x]=tp;
if (son[x]) dfs2(son[x],x,tp);
for (i=head[x];i;i=edge[i].next)
{
int v=edge[i].to;
if (v==pa||v==son[x]) continue;
dfs2(v,x,v);
}
}
int get_lca(int x,int y)
{
while (top[x]!=top[y])
{
if (dep[top[x]]<dep[top[y]]) swap(x,y);
x=fa[top[x]];
}
if (dep[x]<dep[y])
return x;
else return y;
}
void DP(int x,int pa)
{int i,sum,j,p,u,v,cnt=;
for (i=head[x];i;i=edge[i].next)
{
int v=edge[i].to;
if (v==pa) continue;
DP(v,x);
}
cnt=;
for (i=head[x];i;i=edge[i].next)
{
int v=edge[i].to;
if (v!=pa) id[cnt]=v,idf[v]=<<cnt,cnt++;
}
for (i=;i<=(<<cnt)-;i++)
{sum=;
for (j=;j<cnt;j++)
if (!(i>>j&))
{
sum+=f[id[j]][];
}
f[x][i]=sum;
}
int ed=h[x].size();
for (p=;p<=ed-;p++)
{
i=h[x][p];u=;v=;
sum=e[i].d;
if (e[i].u!=x)
sum+=f[e[i].u][];
if (e[i].v!=x)
sum+=f[e[i].v][];
if (e[i].u!=x)
for (u=e[i].u;fa[u]!=x;u=fa[u])
sum+=f[fa[u]][idf[u]];
if (e[i].v!=x)
for (v=e[i].v;fa[v]!=x;v=fa[v])
sum+=f[fa[v]][idf[v]];
for (j=;j<=(<<cnt)-;j++)
if ((j&idf[u])==&&(j&idf[v])==)
{
f[x][j]=max(f[x][j],f[x][j|idf[u]|idf[v]]+sum);
}
}
}
int main()
{int i,u,v,d;
//freopen("zyys.in","r",stdin);
//freopen("zyys.out","w",stdout);
cin>>n>>m;
for (i=;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&d);
if (!d) add(u,v),add(v,u);
else e[++tot].u=u,e[tot].v=v,e[tot].d=d,ans+=d;
}
dfs1(,);dfs2(,,);
for (i=;i<=tot;i++)
{
LCA=get_lca(e[i].u,e[i].v);
if ((dep[e[i].u]+dep[e[i].v]-*dep[LCA])%==)
h[LCA].push_back(i);
}
DP(,);
cout<<ans-f[][];
}
[IOI2007]训练路径的更多相关文章
- bzoj1808 [Ioi2007]training 训练路径
Description 马克(Mirko)和斯拉夫克(Slavko)正在为克罗地亚举办的每年一次的双人骑车马拉松赛而紧张训练.他们需要选择一条训练路径. 他们国家有N个城市和M条道路.每条道路连接两个 ...
- 使用SSD检测框架训练自己的数据
数据集做好后,训练程序为/examples/ssd/ssd_pascal.py,运行之前,我们需要修改相关路径代码,主要是训练路径的修改和关于自己数据集参数的一些修改. cd /examples/ss ...
- K210,yolo,face_mask口罩检测模型训练及其在K210,kd233上部署
前段时间考研,再加上工作,时间很紧,一直没有更新博客,这几天在搞k210的目标检测模型,做个记录,遇到问题可以添加qq522414928或添加微信13473465975,共同学习 首先附上github ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- NOIP前的刷题记录
因为这几天要加油,懒得每篇都来写题解了,就这里记录一下加上一句话题解好了 P4071 [SDOI2016]排列计数 组合数+错排 loj 6217 扑克牌 暴力背包 P2511 [HAOI2008 ...
- 树形dp专题总结
树形dp专题总结 大力dp的练习与晋升 原题均可以在网址上找到 技巧总结 1.换根大法 2.状态定义应只考虑考虑影响的关系 3.数据结构与dp的合理结合(T11) 4.抽直径解决求最长链的许多类问题( ...
- noi前机房日常
2015/6/16 上午a了一道省选分组赛day1t2,并在cf100553H双倍经验,好评 bzoj3152(ctsc2013)贪心,用priority_queue要清空 bx2k上午交了几十题,他 ...
- noip模拟赛(一)宠物之战
宠物之战 (senso.pas/c/cpp) [问题描述] 众所周知,moreD的宠物已经被moreD奴役得体无完肤.这只宠物实在忍无可忍,把自己每天走魔法树的经历告诉了自己的宠物.同时他还说明了自己 ...
- batch gradient descent(批量梯度下降) 和 stochastic gradient descent(随机梯度下降)
批量梯度下降是一种对参数的update进行累积,然后批量更新的一种方式.用于在已知整个训练集时的一种训练方式,但对于大规模数据并不合适. 随机梯度下降是一种对参数随着样本训练,一个一个的及时updat ...
随机推荐
- C语言博客作业-结构体
一.PTA实验作业 6-2 按等级统计学生成绩 1. 本题PTA提交列表 2. 设计思路 定义i,count存放不及格人数 for i=0 to n-1{ 判断 score的值的范围 if 100&g ...
- 201621123062《java程序设计》第六周作业总结
1. 本周学习总结 1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图或相关笔记,对面向对象思想进行一个总结. 注1:关键词与内容不求多,但概念之间的联系要清晰 ...
- 201621123060《JAVA程序设计》第三周学习总结
1. 本周学习总结 1.1写出你认为本周学习中比较重要的知识点关键词,如类.对象.封装等. 关键词:类.方法.属性.对象.多态.继承.封装.面向对象.> 1.2 用思维导图或者Onenote或其 ...
- io多路复用(一)
sever端 1 import socket sk1 = socket.socket() sk1.bind(('127.0.0.1',8001,)) sk1.listen() sk2 = socket ...
- wireshark抓包分析tcp连接与断开
其实对于网络通信的学习,最好还是能够自己抓到包详细地一下,不然只单单通过文字和图的描述印象不够深刻.本文通过实际的抓包操作来看一下tcp的连接与断开是怎样的. 首先需要去https://www.wir ...
- 使用ArrayList时代码内部发生了什么(jdk1.7)?
前言 ArrayList(这里的ArrayList是基于jdk1.7)是在项目中经常使用的集合类,例如我们从数据库中查询出一组数据.这篇文章不去剖析它的继承和实现,只是让我们知道实例化及增删改查时它的 ...
- javascript抛物投栏(抛物线实践)
平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线.水平抛物线就是水平匀速,垂直加速的运动. 抛物线的性质:面内与一个定点F和一条定直线l 的距离相等的点的轨迹叫做抛物线. 定点F叫做抛物线的焦点. ...
- Comet之SSE(Server - Sent - Envent,服务器发送事件)
1.SSE API 先要创建一个新的EventSource对象,并传进一个入口点: var source = new EventSource("myenvent.php"); △: ...
- netty : NioEventLoopGroup 源码分析
NioEventLoopGroup 源码分析 1. 在阅读源码时做了一定的注释,并且做了一些测试分析源码内的执行流程,由于博客篇幅有限.为了方便 IDE 查看.跟踪.调试 代码,所以在 github ...
- react-native-image-picker 运用launchCamera直接调取摄像头的缺陷及修复
在前几天用react-native进行android版本开发当中,用到了"react-native-image-picker"的插件:根据业务的需求:点击按钮-->直接调取摄 ...