本周接手了一个Cassandra系统的维护工作,有一项是需要将应用方的数据导入我们维护的Cassandra集群,并且为应用方提供HTTP的方式访问服务。这是我第一次接触KV系统,原来只是走马观花似的看过KV啊,NoSQL啊。但是实际上没有实际的使用经验。经过两天的学习和接手,终于搞明白了在生产环境中的使用方式。在此简要的笔记一下。本文主要包括的内容有:

Cassandra的简介,

Cassandra的相关CLI

Cassandra的Python API,并且给出一个批量导入数据的例子。

1. Cassandra简介

Cassandra的主要特点就是它不是一个数据库,而是由一堆数据库节点共同构成的一个分布式网络服务,对Cassandra 的一个写操作,会被复制到其他节点上去,对Cassandra的读操作,也会被路由到某个节点上面去读取。对于一个Cassandra群集来说,扩展性能 是比较简单的事情,只管在群集里面添加节点就可以了。

Cassandra是一个混合型的非关系的数据库,类似于Google的BigTable。其主要功能比 Dynomite(分布式的Key-Value存 储系统)更丰富,但支持度却不如文档存储MongoDB(介于关系数据库和非关系数据库之间的开源产品,是非关系数据库当中功能最丰富,最像关系数据库 的。支持的数据结构非常松散,是类似json的bjson格式,因此可以存储比较复杂的数据类型。)Cassandra最初由Facebook开发,后转变成了开源项目。它是一个网络社交云计算方面理想的数据库。以Amazon专有的完全分布式的Dynamo为基础,结合了Google BigTable基于列族(Column Family)的数据模型。P2P去中心化的存储。很多方面都可以称之为Dynamo 2.0。

和其他数据库比较,有几个突出特点:

  1. 模式灵活 :使用Cassandra,像文档存储,你不必提前解决记录中的字段。你可以在系统运行时随意的添加或移除字段。这是一个惊人的效率提升,特别是在大型部 署上。
  2. 真正的可扩展性 :Cassandra是纯粹意义上的水平扩展。为给集群添加更多容量,可以指向另一台电脑。你不必重启任何进程,改变应用查询,或手动迁移任何数据。
  3. 多数据中心识别 :你可以调整你的节点布局来避免某一个数据中心起火,一个备用的数据中心将至少有每条记录的完全复制。

一些使Cassandra提高竞争力的其他功能:

  1. 范围查询 :如果你不喜欢全部的键值查询,则可以设置键的范围来查询。
  2. 列表数据结构 :在混合模式可以将超级列添加到5维。对于每个用户的索引,这是非常方便的。
  3. 分布式写操作 :可以在任何地方任何时间集中读或写任何数据。并且不会有任何单点失败。

2. 基础命令

连接

./cassandra-cli-h 10.224.52.73 -port 9160

集群式自动负载的,因此连接任意一个节点即可。

Check schema

show schema;

在创建了schema或者列族后,可以使用时命令确认是否成功

在运行改命令前,需要使用命令use keyspace_name; 否则会遇到以下错误:

Not authorized to a working keyspace

list

list column_family_name;

可以显示列族的前100列。

3. 批量导入

实验数据来自搜狗实验室的中文词语搭配库,http://www.sogou.com/labs/dl/r.html

数据格式如下:

词语1_词语2 \t 两个词共同出现的次数

在这里并不讨论该数据的具体意义,只是以这个数据为起点来说明如何向应用方提供服务。

部分实际数据:

都要_打牌>--4

等候_一次>--26

本刊_重要>--3                                                                                                                                                                  关系_全方位>14                                                                                                                                                                加热_迅速>--107

设计列族名为 test_only, cli 如下:

create column family test_only

with column_type = 'Standard'

andcomparator = 'UTF8Type'

anddefault_validation_class = 'BytesType'

andkey_validation_class = 'UTF8Type'

andread_repair_chance = 0.1

anddclocal_read_repair_chance = 0.0

andgc_grace = 864000

andmin_compaction_threshold = 4

andmax_compaction_threshold = 32

andreplicate_on_write = true

andcompaction_strategy = 'org.apache.cassandra.db.compaction.SizeTieredCompactionStrategy'

andcaching = 'KEYS_ONLY'

and column_metadata = [

{column_name : 'count',

validation_class : UTF8Type}]

andcompression_options = {'sstable_compression' :'org.apache.cassandra.io.compress.SnappyCompressor'};

连接到Cassandra:pycassa.ConnectionPool(‘keyspace_name’, server_list)

具体到我们的例子就是:

con = pycassa.ConnectionPool('History',server_list=["server1:9160", "server2:9160","server3:9160"])

获取列族:

cf = pycassa.ColumnFamily(con, cfName)

插入一条数据:

cf.insert('row_key', {'col_name': 'col_val'})  

批量插入:

cf.batch_insert({'row1': {'name1': 'val1', 'name2': 'val2'},                                           'row2': {'foo': 'bar'}})  

获取一条数据:

cf.get(‘row_key’)

获取某一列的值:

cf.get(‘row_key’)[‘column_name’]

下面是具体的代码实现:

import pycassa
import time
batch_size = 100
def pycassa_connect(): #start = time.time()
return pycassa.ConnectionPool('History', server_list=["192.168.1.20:9160"])
#end = time.time()
#print "Mola init time: ", (end - start) def batch_insert(file_path, cf):
global batch_size
f = open(file_path, "r")
count=0
error_count = 0
kvmap = {}
for line in f:--
list = line.split("\t")
if len(list) != 2 :
print "skip error data"
continue
column = {}
column['count'] = list[1].replace('\n', '')
try:
kvmap[list[0].decode('gb2312').encode('utf-8')] = column-
if len(kvmap) % batch_size == 0:
cf.batch_insert(kvmap)
kvmap.clear()
count = count + 1
except Exception, ex:
print "found execption"
print ex
error_count = error_count + 1
f.close()
if len(kvmap) > 0 :
cf.batch_insert(kvmap)
----
for key in kvmap:
print "key is %s, value is %s"%(key, kvmap[key])-
print "total insert data is %d, error is %d"%(count, error_count)

如何测试数据是正确的?

def test_after_insert(file_path, cf):
f = open(file_path, "r")
error_count=0
print "Test started"
for line in f:--
list = line.split("\t")
if len(list) != 2 :
print "skip error data"
continue
count = list[1].replace('\n', '')
if cf.get(list[0].decode('gb2312').encode('utf-8'))['count'] != count:
print "Key %s doesn't match value %s"%(list[0].decode('gb2312').encode('utf-8'), count)
error_count = error_count + 1
print "Test completed, found %d error(s)."%error_count
f.close()

Cassandra使用pycassa批量导入数据的更多相关文章

  1. csv文件批量导入数据到sqlite。

    csv文件批量导入数据到sqlite. 代码: f = web.input(bs_switch = {})  # bs_switch 为from表单file字段的namedata =[i.split( ...

  2. 使用python向Redis批量导入数据

    1.使用pipeline进行批量导入数据.包含先使用rpush插入数据,然后使用expire改动过期时间 class Redis_Handler(Handler): def connect(self) ...

  3. Redis批量导入数据的方法

    有时候,我们需要给redis库中插入大量的数据,如做性能测试前的准备数据.遇到这种情况时,偶尔可能也会懵逼一下,这里就给大家介绍一个批量导入数据的方法. 先准备一个redis protocol的文件( ...

  4. 项目总结04:SQL批量导入数据:将具有多表关联的Excel数据,通过sql语句脚本的形式,导入到数据库

    将具有多表关联的Excel数据,通过sql语句脚本的形式,导入到数据库 写在前面:本文用的语言是java:数据库是MySql: 需求:在实际项目中,经常会被客户要求,做批量导入数据:一般的简单的单表数 ...

  5. 批量导入数据到mssql数据库的

    概述 批量导入数据到数据库中,我们有好几种方式. 从一个数据表里生成数据脚本,到另一个数据库里执行脚本 从EXCEL里导入数据 上面两种方式,导入的数据都会生成大量的日志.如果批量导入5W条数据到数据 ...

  6. asp.net线程批量导入数据时通过ajax获取执行状态

    最近因为工作中遇到一个需求,需要做了一个批量导入功能,但长时间运行没个反馈状态,很容易让人看了心急,产生各种臆想!为了解决心里障碍,写了这么个功能. 通过线程执行导入,并把正在执行的状态存入sessi ...

  7. ADO.NET 对数据操作 以及如何通过C# 事务批量导入数据

    ADO.NET 对数据操作 以及如何通过C# 事务批量导入数据   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 ...

  8. asp.net 线程批量导入数据,ajax获取执行状态

    最近做了一个批量导入功能,长时间运行,没个反馈状态,很容易让人看了心急,产生各种臆想!为了解决心里障碍,写了这么个功能. 通过线程执行导入,并把正在执行的状态存入session,既共享执行状态,通过a ...

  9. 随笔编号-09 批量导入数据(Mysql)报MySQL server has gone away 问题的解决方法

    问题场景: 使用*.sql 脚本,批量导入数据到mysql实例中,使用DOS 界面导入的,期间,到最后一步 source D:\aaa.sql  回车后,系统提示 MySQL server has g ...

随机推荐

  1. bzoj4665小w的喜糖 dp+容斥

    4665: 小w的喜糖 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 120  Solved: 72[Submit][Status][Discuss] ...

  2. c语言程序设计第四次作业——顺序结构

    (一)改错题 输出三角形的面积和周长,输入三角形的三条边a.b.c,如果能构成一个三角形,输出面积area和周长perimeter(保留2位小数):否则,输出"These sides do ...

  3. Genymotion配置遇到的坑

    1.Genymotion 无法Add下来 解决: ①首先打开Genymotion,的Settings然后找到VirtualBox,复制链接,在本地找到文件夹,然后返回上一层找到ova文件夹进入, ②然 ...

  4. nodeppt的使用教程

    为什么选择nodeppt 这可能是迄今为止最好的网页版演示库 基于GFM的markdown语法编写 支持html混排,再复杂的demo也可以做! 支持多个皮肤:colors-moon-blue-dar ...

  5. Python List insert()方法详解

    1.功能insert()函数用于将指定对象插入列表的指定位置. 2.语法list.insert(index, obj) 3.参数index: 对象obj需要插入的索引位置.obj: 插入列表中的对象. ...

  6. Helm 架构 - 每天5分钟玩转 Docker 容器技术(161)

    在实践之前,我们先来看看 Helm 的架构. Helm 有两个重要的概念:chart 和 release. chart 是创建一个应用的信息集合,包括各种 Kubernetes 对象的配置模板.参数定 ...

  7. MAC下用homebrew安装及配置apache、php和mysql

    我们用到php运行环境的时候总喜欢用集成包,其实在mac下,用homebrew也可以很快的安装这些东西,配置也很简单. homebrew homebrew是mac下的一个包安装管理工具,使用非常简单方 ...

  8. 容器化现有ASP.NET MVC 5应用

    .NET Core的出现使得ASP.NET应用在Linux环境下使用变得更加普及.而配合上Docker容器,令ASP.NET应用的布署与管理也变得更加方便.在新的项目中运用ASP.NET Core无可 ...

  9. MyBatis 查询映射自定义枚举

    背景                  MyBatis查询若想映射枚举类型,则需要从 EnumTypeHandler 或者 EnumOrdinalTypeHandler 中选一个来使用         ...

  10. linux:如何指定进程运行的CPU

    coolshell最新的文章<性能调优攻略>在"多核CPU调优"章节,提到"我们不能任由操作系统负载均衡,因为我们自己更了解自己的程序,所以,我们可以手动地为 ...