[深度概念]·K-Fold 交叉验证 (Cross-Validation)的理解与应用
K-Fold 交叉验证 (Cross-Validation)的理解与应用
1.K-Fold 交叉验证概念
在机器学习建模过程中,通行的做法通常是将数据分为训练集和测试集。测试集是与训练独立的数据,完全不参与训练,用于最终模型的评估。在训练过程中,经常会出现过拟合的问题,就是模型可以很好的匹配训练数据,却不能很好在预测训练集外的数据。如果此时就使用测试数据来调整模型参数,就相当于在训练时已知部分测试数据的信息,会影响最终评估结果的准确性。通常的做法是在训练数据再中分出一部分做为验证(Validation)数据,用来评估模型的训练效果。
验证数据取自训练数据,但不参与训练,这样可以相对客观的评估模型对于训练集之外数据的匹配程度。模型在验证数据中的评估常用的是交叉验证,又称循环验证。它将原始数据分成K组(K-Fold),将每个子集数据分别做一次验证集,其余的K-1组子集数据作为训练集,这样会得到K个模型。这K个模型分别在验证集中评估结果,最后的误差MSE(Mean Squared Error)加和平均就得到交叉验证误差。交叉验证有效利用了有限的数据,并且评估结果能够尽可能接近模型在测试集上的表现,可以做为模型优化的指标使用。
2.举例说明
下面举一个具体的例子来说明K-Fold的过程,比如如下的数据
- [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
分为K=3组后
- Fold1: [0.5, 0.2]
Fold2: [0.1, 0.3]
Fold3: [0.4, 0.6]
交叉验证的时会使用如下三个模型,分别进行训练和测试,每个测试集误差MSE加和平均就得到了交叉验证的总评分
- Model1: Trained on Fold1 + Fold2, Tested on Fold3
Model2: Trained on Fold2 + Fold3, Tested on Fold1
Model3: Trained on Fold1 + Fold3, Tested on Fold2
3.应用讲解
1、 将全部训练集S分成k个不相交的子集,假设S中的训练样例个数为m,那么每一个子集有m/k个训练样例,相应的子集称作{}。
2、 每次从模型集合M中拿出来一个,然后在训练子集中选择出k-1个
{}(也就是每次只留下一个
),使用这k-1个子集训练
后,得到假设函数
。最后使用剩下的一份
作测试,得到经验错误
。
3、 由于我们每次留下一个(j从1到k),因此会得到k个经验错误,那么对于一个
,它的经验错误是这k个经验错误的平均。
4、 选出平均经验错误率最小的,然后使用全部的S再做一次训练,得到最后的
。
核心内容:
通过上述1,2,3步进行模型性能的测试,取平均值作为某个模型的性能指标
根据性能指标来挑选出最优模型,再进行上述第4步重新进行训练,获得最终模型
疑问解答:
1.为什么不直接拆分训练集与数据集,来验证模型性能,反而采用多次划分的形式,岂不是太麻烦了?
我们为了防止在训练过程中,出现过拟合的问题,通行的做法通常是将数据分为训练集和测试集。测试集是与训练独立的数据,完全不参与训练,用于最终模型的评估。这样的直接划分会导致一个问题就是测试集不会参与训练,这样在小的数据集上会浪费掉这部分数据,无法使模型达到最优(数据决定了程性能上限,模型与算法会逼近这个上限)。但是我们又不能划分测试集,因为需要验证网络泛化性能。采用K-Fold 多次划分的形式就可以利用全部数据集。最后采用平均的方法合理表示模型性能。
2.为什么还要进行所有数据集重新训练,是否太浪费时间?
我们通过K-Fold 多次划分的形式进行训练是为了获取某个模型的性能指标,单一K-Fold训练的模型无法表示总体性能,但是我们可以通过K-Fold训练的训练记录下来较为优异的超参数,然后再以最优模型最优参数进行重新训练,将会取得更优结果。
3.何时使用K-Fold
我的看法,数据总量较小时,其他方法无法继续提升性能,可以尝试K-Fold。其他情况就不太建议了,例如数据量很大,就没必要更多训练数据,同时训练成本也要扩大K倍(主要指的训练时间)。
4.参考
1.K-Fold 交叉验证 (Cross-Validation)
2.规则化和模型选择(Regularization and model selection)
[深度概念]·K-Fold 交叉验证 (Cross-Validation)的理解与应用的更多相关文章
- 交叉验证(Cross Validation)方法思想简介
以下简称交叉验证(Cross Validation)为CV.CV是用来验证分类器的性能一种统计分析方法,基本思想是把在某种意义下将原始数据(dataset)进行分组,一部分做为训练集(train ...
- 交叉验证 Cross validation
来源:CSDN: boat_lee 简单交叉验证 hold-out cross validation 从全部训练数据S中随机选择s个样例作为训练集training set,剩余的作为测试集testin ...
- 交叉验证(Cross Validation)原理小结
交叉验证是在机器学习建立模型和验证模型参数时常用的办法.交叉验证,顾名思义,就是重复的使用数据,把得到的样本数据进行切分,组合为不同的训练集和测试集,用训练集来训练模型,用测试集来评估模型预测的好坏. ...
- 验证和交叉验证(Validation & Cross Validation)
之前在<训练集,验证集,测试集(以及为什么要使用验证集?)(Training Set, Validation Set, Test Set)>一文中已经提过对模型进行验证(评估)的几种方式. ...
- 用交叉验证改善模型的预测表现-着重k重交叉验证
机器学习技术在应用之前使用“训练+检验”的模式(通常被称作”交叉验证“). 预测模型为何无法保持稳定? 让我们通过以下几幅图来理解这个问题: 此处我们试图找到尺寸(size)和价格(price)的关系 ...
- 机器学习--K折交叉验证和非负矩阵分解
1.交叉验证 交叉验证(Cross validation),交叉验证用于防止模型过于复杂而引起的过拟合.有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法. 于是可以先在一个子集上做 ...
- 小白学习之pytorch框架(7)之实战Kaggle比赛:房价预测(K折交叉验证、*args、**kwargs)
本篇博客代码来自于<动手学深度学习>pytorch版,也是代码较多,解释较少的一篇.不过好多方法在我以前的博客都有提,所以这次没提.还有一个原因是,这篇博客的代码,只要好好看看肯定能看懂( ...
- 小白学习之pytorch框架(6)-模型选择(K折交叉验证)、欠拟合、过拟合(权重衰减法(=L2范数正则化)、丢弃法)、正向传播、反向传播
下面要说的基本都是<动手学深度学习>这本花书上的内容,图也采用的书上的 首先说的是训练误差(模型在训练数据集上表现出的误差)和泛化误差(模型在任意一个测试数据集样本上表现出的误差的期望) ...
- sklearn的K折交叉验证函数KFold使用
K折交叉验证时使用: KFold(n_split, shuffle, random_state) 参数:n_split:要划分的折数 shuffle: 每次都进行shuffle,测试集中折数的总和就是 ...
- cross_val_score 交叉验证与 K折交叉验证,嗯都是抄来的,自己作个参考
因为sklearn cross_val_score 交叉验证,这个函数没有洗牌功能,添加K 折交叉验证,可以用来选择模型,也可以用来选择特征 sklearn.model_selection.cross ...
随机推荐
- Dubbo中集群Cluster,负载均衡,容错,路由解析
Dubbo中的Cluster可以将多个服务提供方伪装成一个提供方,具体也就是将Directory中的多个Invoker伪装成一个Invoker,在伪装的过程中包含了容错的处理,负载均衡的处理和路由的处 ...
- CF_229E_Gift_概率DP+组合数学
CF_229E_Gift_概率DP+组合数学 题目描述: 很久很久以前,一位老人和他的妻子住在蔚蓝的海边.有一天,这位老人前去捕鱼,他捉到了一条活着的金鱼.鱼说:“噢,老渔人!我祈求你放我回到海里,这 ...
- JVM学习记录-类加载时机
虚拟机把描述类的数据从Class文件加载到内存,并对数据进行校验.转换解析和初始化,最终形成可以被虚拟机直接使用的Java类型,这就是类的加载机制. 在Java语言里面,类型的加载.连接和初始化过程都 ...
- Drrols规则引擎
1.什么是规则引擎? 规则引擎是一种嵌套在应用程序中的组件,它实现了将业务规则从应用程序代码中分离出来.规则引擎使用特定的语法编写业务规则,规则引擎可以接受数据输入.解释业务规则.并根据业务规则做出相 ...
- ActiveMQ详解
Apache ActiveMQ介绍 使用MQ的场景 ActiveMQ的安装 收发消息的简单实现 ActiveMQ内部实现 queue和topic 消息持久化 kahadb原理 最关键的6个配置 Apa ...
- [翻译 EF Core in Action 2.3] 理解EF Core数据库查询
Entity Framework Core in Action Entityframework Core in action是 Jon P smith 所著的关于Entityframework Cor ...
- C++ : 内联函数和引用变量
一.内联函数 内联函数和普通函数的使用方法没有本质区别,我们来看一个例子,下面展示了内联函数的使用方法: #include <iostream> using namespace std; ...
- 【STM32H7教程】第10章 STM32H7的FLASH,RAM和栈使用情况(map和htm文件)
完整教程下载地址:http://forum.armfly.com/forum.php?mod=viewthread&tid=86980 第10章 STM32H7的FLASH,RAM ...
- Spring Boot 2.0 图文教程 | 集成邮件发送功能
文章首发自个人微信公众号: 小哈学Java 个人网站: https://www.exception.site/springboot/spring-boots-send-mail 大家好,后续会间断地奉 ...
- 给女朋友讲解什么是Optional【JDK 8特性】
前言 只有光头才能变强 前两天带女朋友去图书馆了,随手就给她来了一本<与孩子一起学编程>的书,于是今天就给女朋友讲解一下什么是Optional类. 至于她能不能看懂,那肯定是看不懂的.(学 ...