上一步建立好模型之后,现在就可以训练模型了。

主要代码如下:

import sys
#将当期路径加入系统path中
sys.path.append("E:\\CODE\\Anaconda\\tensorflow\\Kaggle\\My-TensorFlow-tutorials-master\\01 cats vs dogs\\") import os
import numpy as np
import tensorflow as tf
import input_data
import model #%% N_CLASSES = 2 #类别数
IMG_W = 208 # resize the image, if the input image is too large, training will be very slow.
IMG_H = 208
BATCH_SIZE = 16
CAPACITY = 2000 #队列中元素个数
MAX_STEP = 10000 #最大迭代次数 with current parameters, it is suggested to use MAX_STEP>10k
learning_rate = 0.0001 # with current parameters, it is suggested to use learning rate<0.0001 #%%
def run_training(): # you need to change the directories to yours.
#train_dir = '/home/kevin/tensorflow/cats_vs_dogs/data/train/'#数据存放路径
train_dir = 'E:\\data\\Dog_Cat\\train\\'
#logs_train_dir = '/home/kevin/tensorflow/cats_vs_dogs/logs/train/'#存放训练参数,模型等
logs_train_dir = "E:\\CODE\\Anaconda\\tensorflow\\Kaggle\\My-TensorFlow-tutorials-master\\01 cats vs dogs\\" train, train_label = input_data.get_files(train_dir) train_batch, train_label_batch = input_data.get_batch(train,
train_label,
IMG_W,
IMG_H,
BATCH_SIZE,
CAPACITY)
train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)#获得模型的输出
train_loss = model.losses(train_logits, train_label_batch)#获取loss
train_op = model.trainning(train_loss, learning_rate)#训练模型
train__acc = model.evaluation(train_logits, train_label_batch)#模型评估 summary_op = tf.summary.merge_all()
sess = tf.Session()
train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)#把summary保存到路径中
saver = tf.train.Saver() sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord) try:
for step in np.arange(MAX_STEP):
if coord.should_stop():
break
_, tra_loss, tra_acc = sess.run([train_op, train_loss, train__acc]) if step % 50 == 0:
print('Step %d, train loss = %.2f, train accuracy = %.2f%%' %(step, tra_loss, tra_acc*100.0))
summary_str = sess.run(summary_op)
train_writer.add_summary(summary_str, step) if step % 2000 == 0 or (step + 1) == MAX_STEP:
checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
saver.save(sess, checkpoint_path, global_step=step)#保存模型及参数 except tf.errors.OutOfRangeError:
print('Done training -- epoch limit reached')
finally:
coord.request_stop() coord.join(threads)
sess.close() run_training()

一些函数说明如下:

1)tf.summary.merge_all

作用:Merges all summaries collected in the default graph.

2)tf.summary.FileWriter

作用:Writes Summary protocol buffers to event files.

3)tf.train.Saver

作用:保存和恢复变量。

举例:

saver.save(sess, 'my-model', global_step=0)

==> filename: 'my-model-0'
...
saver.save(sess, 'my-model', global_step=1000) ==> filename: 'my-model-1000' 

4)add_summary

作用:Writes Summary protocol buffers to event files.

程序运行后,控制台输出如下:

训练期间,也可以使用tensorboard查看模型训练情况。

可以使用如下命令打开tensorboard。

tensorboard --logdir=log文件路径

log文件路径即为程序中设置的logs_train_dir。

启动tensorboard之后,打开浏览器,输入对应网址,即可查看训练情况。

整体解码如下图:

loss与step的关系如下(两条曲线的原因是训练了两次,一次迭代了10000步,另一次迭代了15000步):

也可以选择查看模型:

说明:

代码来自:https://github.com/kevin28520/My-TensorFlow-tutorials,略有修改

函数作用主要参考tensorflow官网。https://www.tensorflow.org/versions/master/api_docs/

[Kaggle] dogs-vs-cats之模型训练的更多相关文章

  1. A TensorBoard plugin for visualizing arbitrary tensors in a video as your network trains.Beholder是一个TensorBoard插件,用于在模型训练时查看视频帧。

    Beholder is a TensorBoard plugin for viewing frames of a video while your model trains. It comes wit ...

  2. AI佳作解读系列(一)——深度学习模型训练痛点及解决方法

    1 模型训练基本步骤 进入了AI领域,学习了手写字识别等几个demo后,就会发现深度学习模型训练是十分关键和有挑战性的.选定了网络结构后,深度学习训练过程基本大同小异,一般分为如下几个步骤 定义算法公 ...

  3. VGG19模型训练+读取

    目录 VGG-19模型简单介绍 VGG-19模型文件介绍 分析模型文件 mean值查看 Weight和Bias查看 读取代码 读取模型 训练代码 参考资料 VGG-19的介绍和训练这里不做说明,网上资 ...

  4. 机器学习使用sklearn进行模型训练、预测和评价

    cross_val_score(model_name, x_samples, y_labels, cv=k) 作用:验证某个模型在某个训练集上的稳定性,输出k个预测精度. K折交叉验证(k-fold) ...

  5. 谷歌大规模机器学习:模型训练、特征工程和算法选择 (32PPT下载)

    本文转自:http://mp.weixin.qq.com/s/Xe3g2OSkE3BpIC2wdt5J-A 谷歌大规模机器学习:模型训练.特征工程和算法选择 (32PPT下载) 2017-01-26  ...

  6. facenet模型训练

    做下记录,脚本如下: 对比 python3 src/compare.py ../models/-/ ../faces/pyimgs/dashenlin/ytwRkvSdG1000058.png ../ ...

  7. 人脸检测及识别python实现系列(3)——为模型训练准备人脸数据

    人脸检测及识别python实现系列(3)——为模型训练准备人脸数据 机器学习最本质的地方就是基于海量数据统计的学习,说白了,机器学习其实就是在模拟人类儿童的学习行为.举一个简单的例子,成年人并没有主动 ...

  8. 【机器学习PAI实践十】深度学习Caffe框架实现图像分类的模型训练

    背景 我们在之前的文章中介绍过如何通过PAI内置的TensorFlow框架实验基于Cifar10的图像分类,文章链接:https://yq.aliyun.com/articles/72841.使用Te ...

  9. kaldi基于GMM的单音素模型 训练部分

    目录 1. gmm-init-mono 模型初始化 2. compile-train-graghs 训练图初始化 3. align-equal-compiled 特征文件均匀分割 4. gmm-acc ...

随机推荐

  1. Angular组件——父子组件通讯

    Angular组件间通讯 组件树,1号是根组件AppComponent. 组件之间松耦合,组件之间知道的越少越好. 组件4里面点击按钮,触发组件5的初始化逻辑. 传统做法:在按钮4的点击事件里调用组件 ...

  2. iOS开发-LayoutGuide(从top/bottom LayoutGuide到Safe Area)

    iOS7 topLayoutGuide/bottomLayoutGuide 创建一个叫做LayoutGuideStudy的工程,我们打开看一下Main.storyboard: storyboard-t ...

  3. java 定义泛型方法

    1 class Demo{ 2 public <T> T fun(T t){ 3 return t; 4 } 5 } 6 public class GenericsDemo { 7 pub ...

  4. pycharm 的安装及selenium环境的搭建

    6.呵呵哒,前面写了一篇pycharm的安装,,结果自己都看不懂了,copy了别人的,,,自己现在再写一遍,这篇文章主要写pycharm 的安装及selenium 环境的搭建,selenium的搭建不 ...

  5. java.util.zip

    使用java自带的类 java.util.zip进行文件/目录的压缩的话,有一点不足,不支持中文的名件/目录命名,如果有中文名,那么打包就会失败.本人经过一段时间的摸索和实践,发现在一般的Ant.ja ...

  6. 复习C#

    (1)public共有访问.该修饰符可用于类和结构的成员,可用于命名空间下直接定义的类型,对于类和结构成员,如果声明为共有的,那么除自身的成员,外部成员也可以访问 (2)private限制为私有访问. ...

  7. SpringMVC参数校验

    使用SpringMVC时配合hibernate-validate进行参数的合法性校验,能节省一定的代码量. 使用步骤 1.搭建Web工程并引入hibernate-validate依赖 <depe ...

  8. Java基础学习笔记十 Java基础语法之final、static、匿名对象、内部类

    final关键字 继承的出现提高了代码的复用性,并方便开发.但随之也有问题,有些类在描述完之后,不想被继承,或者有些类中的部分方法功能是固定的,不想让子类重写.可是当子类继承了这些特殊类之后,就可以对 ...

  9. backpropagation

    github: https://github.com/mattm/simple-neural-network blog: https://mattmazur.com/2015/03/17/a-step ...

  10. Linux下ip配置与网络重启

    ip配置 //以下ip配置重启失效 sudo ifconfig 192.168.1.1 sudo ifconfig 192.168.1.1 netmask 255.255.255.0 网络重启 //关 ...