数据库和缓存

1.列举常见的关系型数据库和非关系型都有那些?

关系型数据库(需要有表结构)
mysql、oracle、splserver、postgresql、db2、sybase 非关系型数据库(是以key-value存储的,没有表结构)(NoSQL)
MongoDB
MongoDB 是一个高性能,开源,无模式的文档型数据库,开发语言是C++。它在许多场景下可用于替代传统的关系型数据库或键/值存储方式。
Redis
Redis 是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。

2.MySQL常见数据库引擎及比较

InnoDB
支持事务
支持外键
支持表锁、行锁(for update)
表锁:select * from tb for update
行锁:select id,name from tb where id=2 for update myisam
查询速度快
全文索引
支持表锁
表锁:select * from tb for update

3.简述数据库三大范式

# 数据库的三大特性:
'实体':表
'属性':表中的数据(字段)
'关系':表与表之间的关系
----------------------------------------------------
# 数据库设计三大范式:
1:确保每列保持原子性(即数据库表中的所有字段值是不可分解的原子值)
2:确保表中的每列都是和主键相关(表中只能保存一种数据,不可以把多种数据保存在同一张表中)--->完全属于当前表的数据
3:确保每列都和主键直接相关,而不是间接相关(在一个数据库表中保存的数据只能与主键相关)----> 消除传递依赖(间接)
比如在设计一个订单数据表的时候,可以将客户编号作为一个外键和订单表建立相应的关系。
而不可以在订单表中添加关于客户其它信息(比如姓名、所属公司等)的字段。
# 数据库五大约束'
1.primary KEY:设置主键约束;
2.UNIQUE:设置唯一性约束,不能有重复值;
3.CHECK:检查约束
4.NOT NULL:设置非空约束,该字段不能为空;
5.FOREIGN key:设置外键约束。

4、什么是事务?MySQL如何支持事务?

事务用于将某些操作的多个SQL作为原子性操作,一旦有某一个出现错误,即可回滚到原来的状态,从而保证数据库数据完整性。

一般来说,事务是必须满足4个特性(ACID): Atomicity(原子性)、Consistency(一致性)、Isolation(隔离性)、Durability(持久性)。
   1、原子性:事务包含的所有操作要么全部成功,要么全部失败回滚,因此事务的操作如果成功就必须要完全应用到数据库,如果操作失败则不能对数据库有任何影响。
   2、一致性:事务必须使数据库从一个一致性状态变换到另一个一致性状态,也就是说一个事务执行之前和执行之后都必须处于一致性状态。拿转账来说,假设用户A和用户B两者的钱加起来一共是5000,那么不管A和B之间如何转账,转几次账,事务结束后两个用户的钱相加起来应该还得是5000,这就是事务的一致性。
   3、隔离性:当多个用户并发访问数据库时,比如操作同一张表时,数据库为每一个用户开启的事务,不能被其他事务的操作所干扰,多个并发事务之间要相互隔离。即要达到这么一种效果:对于任意两个并发的事务T1和T2,在事务T1看来,T2要么在T1开始之前就已经结束,要么在T1结束之后才开始,这样每个事务都感觉不到有其他事务在并发地执行。
   4、持久性:持久性是指一个事务一旦被提交了,那么对数据库中的数据的改变就是永久性的,即便是在数据库系统遇到故障的情况下也不会丢失提交事务的操作。
最重要的是1,2两个特性。

关闭自动提交:SET AUTOCOMMIT=0;  # 此后需要手动提交事务,应用COMMIT或ROLLBACK提交事务或回滚事务

开启自动提交:SET AUTOCOMMIT=1;

如果执行语句:START TRANSACTION(开始一个事务); 那么不论有无设置自动提交,均需要手动提交或回滚。

事务的周期由用户在命令提示符中输入START TRANSACTION指令开始,直至用户输入COMMIT结束。

5.简述数据库设计中一对多和多对多的应用场景?

FK(一对多)
下拉框里面的数据就需要用FK关联另一张表 M2M(多对多)
多选的下拉框,或者checkbox

6.常见SQL

group by 分组对聚合的条件进行筛选需要通过havhing

SQL的left join 、right join、inner join之间的区别
left join (左连接) 返回包括左表中的所有记录和右表中联结字段相等的记录
right join(右连接) 返回包括右表中的所有记录1和左表中联结字段相等的记录
inner join(内连接)只返回两个表中联结字段相等的行

7.简述触发器、函数、视图、存储过程

触发器:
对数据库某张表的增加、删除,修改前后定义一些操作。 函数:(触发函数是通过select)
聚合函数:max/sum/min/avg
时间格式化:date_format
字符串拼接:concat 存储过程:
将SQL语句保存到数据库中,并命名,以后在代码调用时,直接调用名称即可
参数类型:
  in 只将参数传进去
  out 只拿结果
  inout 既可以传,可以取 函数与存储过程区别:
本质上没区别。只是函数只能返回一个变量的限制,而存储过程可以返回多个。函数是可以嵌入在sql中使用的,可以在select中调用,而存储过程不可以,它需要执行语句call来调用。 视图:
视图是一个虚拟表,不是真实存在的(一般只能查,不能改)

8.MySQL索引种类

单列
普通索引:加速查找
唯一索引:加速查找 + 约束:不能重复(只能有一个空,不然就重复了)
主键(primay key):加速查找 + 约束:不能重复 + 不能为空
多列
  联合索引(多个列创建索引)-----> 相当于单列的普通索引
  联合唯一索引 -----> 相当于单列的唯一索引
  ps:联合索引的特点:遵循最左前缀的规则
其他词语:
·· - 索引合并,利用多个单例索引查询;(例如在数据库查用户名和密码,分别给用户名和密码建立索引)
- 覆盖索引,在索引表中就能将想要的数据查询到;

9.索引在什么情况下遵循最左前缀的规则?

联合索引

10.主键和外键的区别

主键是能确定一条记录的唯一标示。例如,身份证证号

外键:用于与另一张表的关联,是能确定另一张表记录的字段,用于保持数据的一致性
  主键 外键
定义 唯一标识一条记录,不能有重复的,不允许为空 表的外键是另一张表的主键,外键可以有重复的,可以为空
作用 用来保证数据完整性 用来与其他表建立联系的
个数 主键只能有一个 一个表可以有多个外键

11.MySQL常见的函数

聚合函数
max/min/sum/avg 时间格式化
date_format 字符串拼接
concat(当拼接了null,则返回null) 截取字符串
substring 返回字节个数
length

12.列举 创建索引但是无法命中索引的8种情况

1. like '%xx'
select * from tb1 where name like '%cn';
2. 使用函数
select * from tb1 where reverse(name) = 'wupeiqi';
3. or
select * from tb1 where nid = 1 or email = 'seven@live.com';
特别的:当or条件中有未建立索引的列才失效,以下会走索引
select * from tb1 where nid = 1 or name = 'seven';
select * from tb1 where nid = 1 or email = 'seven@live.com' and name = 'alex'
4. 类型不一致
如果列是字符串类型,传入条件是必须用引号引起来,不然...
select * from tb1 where name = 999;
5. !=
select * from tb1 where name != 'alex'
特别的:如果是主键,则还是会走索引
select * from tb1 where nid != 123
6. >
select * from tb1 where name > 'alex'
特别的:如果是主键或索引是整数类型,则还是会走索引
select * from tb1 where nid > 123
select * from tb1 where num > 123
7. order by
select email from tb1 order by name desc;
当根据索引排序时候,选择的映射如果不是索引,则不走索引
特别的:如果对主键排序,则还是走索引:
select * from tb1 order by nid desc; 8. 组合索引最左前缀
如果组合索引为:(name,email)
name and email -- 使用索引
name -- 使用索引
email -- 不使用索引

13.如何开启慢日志查询?

修改配置文件
slow_query_log = OFF 是否开启慢日志记录
long_query_time = 2 时间限制,超过此时间,则记录
slow_query_log_file = /usr/slow.log 日志文件
log_queries_not_using_indexes = OFF 为使用索引的搜索是否记录 下面是开启
slow_query_log = ON
long_query_time = 2
log_queries_not_using_indexes = OFF
log_queries_not_using_indexes = ON 注:查看当前配置信息:
   show variables like '%query%'
修改当前配置:
    set global 变量名 = 值

14.数据库导入导出命令

备份所有数据库:
 mysqldump –u 用户名 –p –h 主机名 --all-databases > 备份文件名.sql

备份整个或多个数据库:
 mysqldump –u 用户名 –p –h 主机名 --databases db1 db2 db3 … > 备份文件名.sql

备份某个数据库的某些表:
 mysqldump –u 用户名 –p –h 主机名 数据库名 表1 表2 表3… > 备份文件名.sql

通过mysqldump,如果使用了"--all-databases"或"--databases"选项,则在备份文件中包含CREATE DATABASE和USE语句,故并不需要指定一个数据库名去恢复备份文件。
 mysql –u 用户名 –p < 备份文件.sql

通过mysqldump,如果没有使用"--databases"选项,则备份文件中不包含CREATE DATABASE和USE语句,那么在恢复的时候必须指定数据库。
 mysql –u 用户名 –p 数据库名 < 备份文件.sql

15.数据库优化方案

可以从数据库服务器部署、表设计、表查询等方面考虑。

1、创建数据表时把固定长度的放在前面
2、将固定数据放入内存: 例如:choice字段 (django中有用到,数字1、2、3…… 对应相应内容)
3、char 和 varchar 的区别(char可变, varchar不可变 )
4、联合索引遵循最左前缀(从最左侧开始检索)
5、避免使用 select *
6、读写分离
    - 实现:两台服务器同步数据
    - 利用数据库的主从分离:主,用于增加、删除、更新;从,用于查询;
7、分库
    - 当数据库中的表太多,将某些表分到不同的数据库,例如:1W张表时
    - 代价:连表查询
8、分表
    - 水平分表:将某些列拆分到另外一张表,例如:博客+博客详情
    - 垂直分表:讲些历史信息分到另外一张表中,例如:支付宝账单 9、加缓存
    - 利用redis、memcache (常用数据放到缓存里,提高取数据速度) 10、如果只想获取一条数据
- select xxx from tb where name='alex' limit 1;

16.char和varchar的区别

char可变,varchar不可变 。

17.简述MySQL的执行计划

查看有没有命中索引,让数据库帮看看运行速度快不快
explain select * from table;

当type为all时,是为全表索引。

18.在对name做了唯一索引前提下,简述以下区别:


select * from tb where name = ‘Oldboy-Wupeiqi’ 
 
    select * from tb where name = ‘Oldboy-Wupeiqi’ limit 1

没做唯一索引的话,前者查询会全表扫描,效率低些;
limit 1,只要找到对应一条数据,就不继续往下扫描.

然而 name 字段添加唯一索引了,加不加limit 1,意义都不大。

19.1000w条数据,使用limit offset 分页时,为什么越往后翻越慢?如何解决?

  答案一:
先查主键,在分页。
select * from tb where id in (
select id from tb where limit 10 offset 30
); 答案二:
记录当前页ID最大值和最小值
在翻页时,根据条件先进行筛选(子查询);筛选完毕之后,再根据limit offset 查询。 select * from (select * from tb where id > 1000000) limit 10 offset 0; 如果用户自己修改页码,也可能导致慢;此时对url种的页码进行加密(rest framework )

20.什么是索引合并?

简单地说,对同一张表的一条sql可以使用多个索引,对这些索引取交集、并集,从而减少从表中取数据的次数,提高查询效率。

21.什么是覆盖索引?

这个概念很重要!
一个索引涵盖了所有需要查询和返回字段的值,称为"覆盖索引"。
只需扫描索引而无须回表,也就是说只需要通过索引就可以返回查询数据,而不必先查到索引之后再去查询数据。性能不言而喻,速度非常快,很强大!!
在 Explain 的时候,输出的 Extra 信息中如果有 "Using Index" ,就表示这条查询使用了覆盖索引。

22.简述数据库读写分离

- 前提:主备两台服务器同步数据
- 利用数据库的主从分离:主,用于增加、删除、更新;从,用于查询;
例:Django数据库读写分离
步骤一:写配置文件
class Router1:
  # 指定到某个数据库【读】数据
def db_for_read(self, model, **hints):
"""
Attempts to read auth models go to auth_db.
"""
if model._meta.model_name == 'usertype':
return 'db1'
else:
return 'default'
   
  # 指定到某个数据库【写】数据
def db_for_write(self, model, **hints):
"""
Attempts to write auth models go to auth_db.
"""
return 'default' 步骤二:配置settings
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.sqlite3',
'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
},
'db1': {
'ENGINE': 'django.db.backends.sqlite3',
'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
}
}
DATABASE_ROUTERS = ['db_router.Router1',] 步骤三:视图里用 using 方式可以指定读写数据库
from django.shortcuts import render,HttpResponse
from app01 import models def index(request):
models.UserType.objects.using('db1').create(title='普通用户')
  # 手动指定去某个数据库取数据
result = models.UserType.objects.all().using('db1')
print(result)
return HttpResponse('...')

23.简述数据库分库,分表(水平、垂直)?

 1、分库
当数据库中的表太多,将某些表分到不同数据库,例如:1W张表时
代价:连表查询跨数据库,代码变多。
2、分表(提高查询性能)
水平分表:表的记录行数庞大,将表按记录行数分成n份,每张表就小了很多。这些表结构一致。
垂直分表:将表的一些内容很长的列拆出来独立成另一张表。

24.redis和memcached比较?

区别:
1:redis不仅支持简单的key_value类型,还支持字符串,HASH,列表,集合。
2:内存使用效率对比:使用简单的key-value存储的话,Memcached的内存利用率更高;
而如果Redis采用HASH结构来做key-value存储,由于其组合式的压缩,Redis的内存利用率更高。
3:性能对比:由于Redis只使用单核,而Memcached可以使用多核,所以平均每一个核上Redis在存储小数据时性能更高;
而在100k以上的数据中,Memcached性能更高。
4:Redis虽然是基于内存的存储系统,但是它本身是支持内存数据的持久化的;而memcached是不支持数据持久化操作的。
5:集群管理不同,Memcached本身并不支持分布式,因此只能在客户端通过像一致性哈希这样的分布式算法来实现Memcached的分布式存储。

25.redis中数据库默认是多少个db 及作用?

Redis默认支持16个数据库,可以通过配置databases来修改这一数字。客户端与Redis建立连接后会自动选择0号数据库,不过可以随时使用SELECT命令更换数据库。

Redis支持多个数据库,并且每个数据库的数据是隔离的不能共享,并且基于单机才有,如果是集群就没有数据库的概念。

26.python操作redis的模块

连接
- 直接连接:
import redis
r = redis.Redis(host='10.211.55.4', port=6379)
r.set('foo', 'Bar')    # 这里的方法与Redis命令类似
print r.get('foo')
- 连接池:
import redis
pool = redis.ConnectionPool(host='10.211.55.4', port=6379)
r = redis.Redis(connection_pool=pool)
r.set('foo', 'Bar')
print r.get('foo')

27.如果redis中的某个列表中的数据量非常大,如果实现循环显示每一个值?

 - 如果一个列表在redis中保存了10w个值,我需要将所有值全部循环并显示,请问如何实现?
一个一个取值,列表没有iter方法,但能自定义。
写个生成器:
     def list_iter(key, count=3):
start = 0
while True:
result = conn.lrange(key, start, start+count-1)
start += count
if not result:
break
for item in result:
yield item
    # 调用
for val in list_iter('num_list'):
print(val)
  
场景:投票系统

28.redis如何实现主从复制?以及数据同步机制?

优势:
- 高可用
- 分担主压力
注意:
- slave设置只读 从的配置文件添加以下记录,即可:
slaveof 1.1.1.1 3306

29.redis中的sentinel (哨兵)的作用?

  自动主从之间进行切换,实现热切。
检测主是否挂掉,且超过一半的sentinel检测到挂了之后才进行进行切换。
如果主修复好了,再次启动时候,会变成从。 启动主redis:
redis-server /etc/redis-6379.conf 启动主redis
redis-server /etc/redis-6380.conf 启动从redis 在linux中:
找到 /etc/redis-sentinel-8001.conf 配置文件,在内部:
- 哨兵的端口 port = 8001
- 主redis的IP,哨兵个数的一半/1 找到 /etc/redis-sentinel-8002.conf 配置文件,在内部:
- 哨兵的端口 port = 8002
- 主redis的IP, 1 启动两个哨兵

30.如何实现redis集群?

 redis集群  分片、分布式redis
redis-py-cluster
集群方案:
- redis cluster 官方提供的集群方案。
- codis,豌豆荚技术团队。
- tweproxy,Twiter技术团队。
redis cluster的原理?
- 基于分片来完成。
- redis将所有能放置数据的地方创建了 16384 个哈希槽。
- 如果设置集群的话,就可以为每个实例分配哈希槽:
- 192.168.1.20【0-5000】
- 192.168.1.21【5001-10000】
- 192.168.1.22【10001-16384】
- 以后想要在redis中写值时,
set k1 123
将k1通过crc16的算法,将k1转换成一个数字。然后再将该数字和16384求余,如果得到的余数 3000,那么就将该值写入到 192.168.1.20 实例中。

31.redis中默认有多少个哈希槽?

16384

32.简述redis有哪几种持久化策略及比较?

RDB:每隔一段时间对redis进行一次持久化。
- 缺点:数据不完整
- 优点:速度快
AOF:把所有命令保存起来,如果想到重新生成到redis,那么就要把命令重新执行一次。
- 缺点:速度慢,文件比较大
- 优点:数据完整

33.列举redis支持的过期策略。

  voltile-lru:     从已设置过期时间的数据集(server.db[i].expires)中挑选最近利用率最小的数据淘汰
volatile-ttl: 从已设置过期时间的数据集(server.db[i].expires)中挑选即将过期的数据淘汰
volatile-random: 从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰 allkeys-lru: 从数据集(server.db[i].dict)中挑选最近利用率最小的数据淘汰
allkeys-random: 从数据集(server.db[i].dict)中任意选择数据淘汰
no-enviction(驱逐):禁止驱逐数据

34.MySQL里有2000w数据,redis中只存20w的数据,如何保证redis中都是热点数据?

  相关知识:redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略(回收策略)。redis 提供 6 种数据淘汰策略:

  volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近利用率最小的数据淘汰
volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选即将过期的数据淘汰
volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
allkeys-lru:从数据集(server.db[i].dict)中挑选最近利用率最小的数据淘汰
allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
no-enviction(驱逐):禁止驱逐数据

35.写代码,基于redis的列表实现 先进先出、后进先出队列、优先级队列

 参看script—redis源码
from scrapy.utils.reqser import request_to_dict, request_from_dict from . import picklecompat class Base(object):
"""Per-spider base queue class""" def __init__(self, server, spider, key, serializer=None):
"""Initialize per-spider redis queue. Parameters
----------
server : StrictRedis
Redis client instance.
spider : Spider
Scrapy spider instance.
key: str
Redis key where to put and get messages.
serializer : object
Serializer object with ``loads`` and ``dumps`` methods. """
if serializer is None:
# Backward compatibility.
# TODO: deprecate pickle.
serializer = picklecompat
if not hasattr(serializer, 'loads'):
raise TypeError("serializer does not implement 'loads' function: %r"
% serializer)
if not hasattr(serializer, 'dumps'):
raise TypeError("serializer '%s' does not implement 'dumps' function: %r"
% serializer) self.server = server
self.spider = spider
self.key = key % {'spider': spider.name}
self.serializer = serializer def _encode_request(self, request):
"""Encode a request object"""
obj = request_to_dict(request, self.spider)
return self.serializer.dumps(obj) def _decode_request(self, encoded_request):
"""Decode an request previously encoded"""
obj = self.serializer.loads(encoded_request)
return request_from_dict(obj, self.spider) def __len__(self):
"""Return the length of the queue"""
raise NotImplementedError def push(self, request):
"""Push a request"""
raise NotImplementedError def pop(self, timeout=0):
"""Pop a request"""
raise NotImplementedError def clear(self):
"""Clear queue/stack"""
self.server.delete(self.key) class FifoQueue(Base):
"""Per-spider FIFO queue""" def __len__(self):
"""Return the length of the queue"""
return self.server.llen(self.key) def push(self, request):
"""Push a request"""
self.server.lpush(self.key, self._encode_request(request)) def pop(self, timeout=0):
"""Pop a request"""
if timeout > 0:
data = self.server.brpop(self.key, timeout)
if isinstance(data, tuple):
data = data[1]
else:
data = self.server.rpop(self.key)
if data:
return self._decode_request(data) class PriorityQueue(Base):
"""Per-spider priority queue abstraction using redis' sorted set""" def __len__(self):
"""Return the length of the queue"""
return self.server.zcard(self.key) def push(self, request):
"""Push a request"""
data = self._encode_request(request)
score = -request.priority
# We don't use zadd method as the order of arguments change depending on
# whether the class is Redis or StrictRedis, and the option of using
# kwargs only accepts strings, not bytes.
self.server.execute_command('ZADD', self.key, score, data) def pop(self, timeout=0):
"""
Pop a request
timeout not support in this queue class
"""
# use atomic range/remove using multi/exec
pipe = self.server.pipeline()
pipe.multi()
pipe.zrange(self.key, 0, 0).zremrangebyrank(self.key, 0, 0)
results, count = pipe.execute()
if results:
return self._decode_request(results[0]) class LifoQueue(Base):
"""Per-spider LIFO queue.""" def __len__(self):
"""Return the length of the stack"""
return self.server.llen(self.key) def push(self, request):
"""Push a request"""
self.server.lpush(self.key, self._encode_request(request)) def pop(self, timeout=0):
"""Pop a request"""
if timeout > 0:
data = self.server.blpop(self.key, timeout)
if isinstance(data, tuple):
data = data[1]
else:
data = self.server.lpop(self.key) if data:
return self._decode_request(data) # TODO: Deprecate the use of these names.
SpiderQueue = FifoQueue
SpiderStack = LifoQueue
SpiderPriorityQueue = PriorityQueue

36.如何基于redis实现消息队列?

# 通过"发布订阅"模式(P-S)实现消息队列。只要有任务就给所有订阅者每人一份。
# 发布者发布消息到频道了,频道就是一个消息队列。

# 发布者:
import redis
conn = redis.Redis(host='192.168.1.99', port=6379)
conn.publish('104.9MH', "hahahahahaha")

# 订阅者:
import redis
conn = redis.Redis(host='192.168.1.99', port=6379)
pub = conn.pubsub()
pub.subscribe('104.9MH')
while True:
msg= pub.parse_response()
print(msg)

对了,redis 做消息队列不合适。
业务上避免过度复用一个redis,用它做缓存、做计算,还做任务队列,压力太大,不好。

37.什么是codis及作用?

 Codis是一个分布式Redis解决方案, 对于上层的应用来说, 连接到Codis Proxy和连接原生的Redis Server没有明显的区别,
上层应用可以像使用单机的Redis一样使用, Codis底层会处理请求的转发, 不停机的数据迁移等工作,
所有后边的一切事情, 对于前面的客户端来说是透明的, 可以简单的认为后边连接的是一个内存无限大的Redis服务。

38.什么是twemproxy及作用?

  是 Twtter 开源的一个 Redis 和 Memcache 代理服务器,主要用于管理 Redis 和 Memcached 集群,减少与Cache 服务器直接连接的数量。

39.写代码实现redis事务操作

  import redis

  pool = redis.ConnectionPool(host='192.168.1.99', port=6379)
conn = redis.Redis(connection_pool=pool) # 开始事务
pipe = conn.pipeline(transaction=True)
pipe.multi()
pipe.set('name', 'bendere')
pipe.set('role', 'sb')
# 提交
pipe.execute()

40.redis中的watch的命令的作用?

在Redis的事务中,WATCH命令可用于提供CAS(check-and-set)功能。
假设我们通过WATCH命令在事务执行之前【监视】了多个Keys,倘若在WATCH之后有任何Key的值发生了变化,
EXEC命令执行的事务都将被放弃,同时返回Null multi-bulk应答以通知调用者事务执行失败。 面试题:你如何控制剩余的数量不会出问题?
方式一:- 通过redis的watch实现
import redis
conn = redis.Redis(host='192.168.1.99', port=6379) # conn.set('count',1000)
val = conn.get('count')
print(val) with conn.pipeline(transaction=True) as pipe: # 先监视,自己的值没有被修改过
conn.watch('count') # 事务开始
pipe.multi()
old_count = conn.get('count')
count = int(old_count)
print('现在剩余的商品有:%s' % count)
input("问媳妇让不让买?")
pipe.set('count', count - 1) # 执行,把所有命令一次性推送过去
pipe.execute()
方式二 - 数据库的锁

41.谈谈数据库锁

以MySQL为例。InnoDB 存储引擎实现了行锁与表锁。行锁可以以行为单位对数据集进行锁定。表锁可以以表为单位对数据集进行锁定。

行锁、表锁又可分为两种锁:共享锁与排他锁。

  • 共享锁:允许一个事务读取一行,阻止其他事务获得相同数据集的排他锁。但允许其他事务获取共享锁。
  • 排他锁:允许获得排他锁的事务更新数据,阻止其他事务取得相同数据集的共享与排他锁。但是可以对获取了排他锁的数据集进行单纯的查询访问。

对于 Update、Delete、insert 语句,InnoDB 会自动给涉及的数据集隐式的加上排他锁。对于 select 语句 InnoDB 不会加任何锁。可以通过显式的方式获取共享锁或者排他锁。

  • 共享锁:select * from table where ... lock in share mode
  • 排他锁:select * from table where ... for update

42.基于redis如何实现商城商品数量计数器?

import redis

conn = redis.Redis(host='192.168.1.99', port=6379)
conn.set('count',1000)
with conn.pipeline(transaction=True) as pipe: # 先监视,自己的值没有被修改过
conn.watch('count') # 事务开始
pipe.multi()
old_count = conn.get('count')
count = int(old_count)
if count > 0: # 有库存
pipe.set('count', count - 1) # 执行,把所有命令一次性推送过去
pipe.execute()

43.简述redis分布式锁和redlock的实现机制

在不同进程需要互斥地访问共享资源时,分布式锁是一种非常有用的技术手段。 
用Redis实现分布式锁管理器的算法,我们把这个算法称为RedLock。 实现
- 写值并设置超时时间
- 超过一半的redis实例设置成功,就表示加锁完成。
- 使用:安装redlock-py
from redlock import Redlock dlm = Redlock(
[
{"host": "localhost", "port": 6379, "db": 0},
{"host": "localhost", "port": 6379, "db": 0},
{"host": "localhost", "port": 6379, "db": 0},
]
) # 加锁
my_lock = dlm.lock("my_resource_name", 10000)
if my_lock:
# 进行操作
# 解锁
dlm.unlock(my_lock)
else:
print('获取锁失败')
 redis分布式锁?
# 不是单机操作,又多了一/多台机器
# redis内部是单进程、单线程,是数据安全的(只有自己的线程在操作数据)
----------------------------------------------------------------
A、B、C,三个实例(主)
1、来了一个'隔壁老王'要操作,且不想让别人操作,加锁;
加锁:'隔壁老王'自己生成一个随机字符串,设置到A、B、C里(xxx=666)
2、来了一个'邻居老李'要操作A、B、C,一读发现里面有字符串,擦,被加锁了,不能操作了,等着吧~
3、'隔壁老王'解决完问题,不用锁了,把A、B、C里的key:'xxx'删掉;完成解锁
4、'邻居老李'现在可以访问,可以加锁了
# 问题:
1、如果'隔壁老王'加锁后突然挂了,就没人解锁,就死锁了,其他人干看着没法用咋办?
2、如果'隔壁老王'去给A、B、C加锁的过程中,刚加到A,'邻居老李'就去操作C了,加锁成功or失败?
3、如果'隔壁老王'去给A、B、C加锁时,C突然挂了,这次加锁是成功还是失败?
4、如果'隔壁老王'去给A、B、C加锁时,超时时间为5秒,加一个锁耗时3秒,此次加锁能成功吗?
# 解决
1、安全起见,让'隔壁老王'加锁时设置超时时间,超时的话就会自动解锁(删除key:'xxx')
2、加锁程度达到(1/2)+1个就表示加锁成功,即使没有给全部实例加锁;
3、加锁程度达到(1/2)+1个就表示加锁成功,即使没有给全部实例加锁;
4、不能成功,锁还没加完就过期,没有意义了,应该合理设置过期时间

44.什么是一致性哈希?Python中是否有相应模块?

一致性hash算法(DHT)可以通过减少影响范围的方式,解决增减服务器导致的数据散列问题,从而解决了分布式环境下负载均衡问题;
如果存在热点数据,可以通过增添节点的方式,对热点区间进行划分,将压力分配至其他服务器,重新达到负载均衡的状态。
Python模块--hash_ring,即Python中的一致性hash

45.如何高效的找到redis中所有以"w3c"开头的key?

redis 有一个keys命令。
# 语法:KEYS pattern
# 说明:返回与指定模式相匹配的所用的keys。
该命令所支持的匹配模式如下:
1、"?":用于匹配单个字符。例如,h?llo可以匹配hello、hallo和hxllo等;
2、"*":用于匹配零个或者多个字符。例如,h*llo可以匹配hllo和heeeello等;
2、"[]":可以用来指定模式的选择区间。例如h[ae]llo可以匹配hello和hallo,但是不能匹配hillo。同时,可以使用“/”符号来转义特殊的字符
# 例子:

  redis 127.0.0.1:6379> KEYS w3c*
  1) "w3c1"
  2) "w3c123"
  3) "w3c12"

# 注意
KEYS 的速度非常快,但如果数据太大,内存可能会崩掉,
如果需要从一个数据集中查找特定的key,最好还是用Redis的集合结构(set)来代替。
 
来自转载,有较大改动。

Python 经典面试题汇总之数据库篇的更多相关文章

  1. Python 经典面试题汇总之基础篇

    基础篇 1:为什么学习Python 公司建议使用Python,然后自己通过百度和向有学过Python的同学了解了Python.Python这门语言,入门比较简单,它简单易学,生态圈比较强大,涉及的地方 ...

  2. Python 经典面试题汇总之网络篇

    网络篇 1.简述 OSI 七层协议 物理层:定义物理设备标准,如网线的接口类型.光纤的接口类型.各种传输介质. 数据链路层:定义如何传输格式化数据,以及如何访问物理介质. 网络层:定义逻辑网络地址. ...

  3. Python 经典面试题汇总之框架篇

    前端和框架 1.谈谈你对http协议的认识 浏览器本质,socket客户端遵循Http协议 HTTP协议本质:通过\r\n分割的规范,请求响应之后断开链接 ==> 短连接.无状态 具体: Htt ...

  4. php面试题汇总二(基础篇附答案)

    介绍一些php常见面试题及答案,都是平时面试的时候经常会遇到的,小伙伴们仔细了解下吧.接着上一篇php面试题汇总一(基础篇附答案) 1.在PHP中,当前脚本的名称(不包括路径和查询字符串)记录在预定义 ...

  5. python面试笔试题汇总

    Python面试攻略(嗨谈篇) 110道python面试笔试题汇总,你能答对几道? Python 面试问答 Top 25 2018 年最常见的 Python 面试题 & 答案

  6. Python自动化测试面试题-用例设计篇

    目录 Python自动化测试面试题-经验篇 Python自动化测试面试题-用例设计篇 Python自动化测试面试题-Linux篇 Python自动化测试面试题-MySQL篇 Python自动化测试面试 ...

  7. C/C++ 经典面试题汇总

    面试题1:变量的声明和定义有什么区别 ? 为变量分配地址和存储空间的称为定义,不分配地址的称为声明.一个变量可以在多个地方声明,但是只在一个地方定义.加入extern修饰的是变量的声明,说明此变量将在 ...

  8. 110道python面试笔试题汇总,你能答对几道?

    数据分析系列教程插播一篇面试题教程,最近公众号新来了不少朋友,这几天不少粉丝留言说问我有没有python面试题,其实之前分享过一些面试题,今天统一再给大家分享一遍,也希望能帮助此时仍在找工作的同学,尽 ...

  9. php面试题汇总一(基础篇附答案)

    一份不错的php面试题,附答案,有准备换工作的同学可以参考一下. 1:使用五种以上方式获取一个文件的扩展名要求:dir/upload.image.jpg,找出 .jpg 或者 jpg ,必须使用PHP ...

随机推荐

  1. Spring Boot整合Mybatis并完成CRUD操作

    MyBatis 是一款优秀的持久层框架,被各大互联网公司使用,本文使用Spring Boot整合Mybatis,并完成CRUD操作. 为什么要使用Mybatis?我们需要掌握Mybatis吗? 说的官 ...

  2. 第65章 博客帖子 - Identity Server 4 中文文档(v1.0.0)

    第65章 博客帖子 65.1 团队帖子 65.1.1 2019 IdentityServer中的范围和声明设计 尝试使用IdentityServer4的设备流程 OAuth2中隐含流的状态 另一种保护 ...

  3. JenKins使用pm2部署.net core网站

    登录事先准备好的 Jenkins 1 新建任务 2 源码管理 git 输入正确地址 3 构建环境:Delete workspace before build startsAbort the build ...

  4. 【swoole】如何在docker+swoole环境下测试udp服务

    前面几篇文章讲了使用 docker+swoole 环境来测试tcp服务以及如何测试,但是当我开始学习udp服务那块的时候,发现使用原来的方式在 docker+swoole 环境下行不通啦,后来发现如果 ...

  5. 网页设计(CSS&JS)

    实验一  简单静态网页设计 一. 实验目的: 复习使用记事本编辑网页的方法. 熟悉不同表单控件类型的应用. 练习使用记事本在网页中添加表单与表单元素. 二. 实验内容: 根据提供的素材设计在线调查问卷 ...

  6. 【转载】c++中堆、栈内存分配

    一.内存划分 1.栈区(stack)— 由编译器自动分配释放 ,存放函数参数值,局部变量值等.其操作方式类似于数据结构中栈.2.堆区(heap) — 一般由程序员分配释放, 若程序员不释放,程序结束时 ...

  7. 开源:Taurus.MVC 框架 (已支持.NET Core)

    为什么要创造Taurus.MVC: 记得被上一家公司忽悠去负责公司电商平台的时候,情况是这样的: 项目原版是外包给第三方的,使用:WebForm+NHibernate,代码不堪入目,Bug无限,经常点 ...

  8. JDK对CAS ABA问题解决-AtomicMarkableReference和AtomicStampedReference

    我们知道AtomicInteger和AtomicLong的原子操作,但是在这两个类在CAS操作的时候会遇到ABA问题,可能大家会疑问什么是ABA问题呢,请待我细细道来: ABA问题:简单讲就是多线程环 ...

  9. 经典排序算法 — C#版本(中)

    归并排序比较适合大规模得数据排序,借鉴了分治思想. 归并排序原理 自古以来,分久必合合久必分. 我们可以这样理解归并排序,分-分到不能分为止,然后合并. 使用递归将问题一点一点分解,最后进行合并. 分 ...

  10. java面试基础(一)

    1.基本数据类型.封装类和运算操作(1)简述 & 和 && ,以及 | 和 || 的区别.———&和|是位运算符也是逻辑运算符,作为逻辑运算符时左右两边都会进行判断(不 ...