https://www.luogu.org/problemnew/show/P4424

题解

我们首先按位考虑。

如果有一位最终的结果为1,那么我们可以把树的序列看成一个二进制数,先出现的在底位,后出现的在高位,操作序列也可以看做一个二进制数,\(and\)为1,\(or\)为0,先出现的在低位,后出现的在高位。

首先操作序列是不可能把0变成1的,那么要使最后的结果为1,就得考虑数字序列最高位的1,那么如果操作序列的更高位有1,结果肯定会变成0,否则如果操作序列这一位不是1,那么结果肯定是1。

如果这两种情况都不是,那么说明这一位操作序列和数字序列都是1,这时就得往低位继续判断。

如此归纳下去,如果需要满足这一位为1,必须要求数字序列>操作序列。

再考虑多位的情况,相当于是有很多的限制。

这样我们就会得到一个性质,合法的序列是一段连续的二进制数。

我们直接把所有序列拍完序后对每个询问暴力扫就好了。

注意边界!!!!

代码

#include<bits/stdc++.h>
#define N 5009
#define M 1009
using namespace std;
typedef long long ll;
const int mod=1000000007;
char s[N];
int n,m,q,rnk[N];
ll ji[N],cnt[N];
inline void MOD(ll &x){x=x>=mod?x-mod:x;}
inline ll rd(){
ll x=0;char c=getchar();bool f=0;
while(!isdigit(c)){if(c=='-')f=1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
return f?-x:x;
}
struct skr{
int a[M],id;
inline bool operator <(const skr &b)const{
for(int i=1;i<=n;++i)if(a[i]!=b.a[i])return a[i]>b.a[i];
return 0;
}
}a[N];
int main(){
n=rd();m=rd();q=rd();
ji[0]=1;
for(int i=1;i<=n;++i)ji[i]=ji[i-1]*2%mod;
for(int i=1;i<=n;++i){
scanf("%s",s+1);
for(int j=1;j<=m;++j){
a[j].a[n-i+1]=s[j]^48;
}
}
for(int i=1;i<=m;++i)a[i].id=i;
sort(a+1,a+m+1);
for(int i=1;i<=m;++i)rnk[a[i].id]=i;
for(int i=1;i<=m;++i)for(int j=1;j<=n;++j)if(a[i].a[j])MOD(cnt[i]+=ji[n-j]);
for(int j=1;j<=n;++j)MOD(cnt[0]+=ji[n-j]);MOD(cnt[0]+=1);
while(q--){
scanf("%s",s+1);
int L=m+1,R=0;
for(int i=1;i<=m;++i)
if(s[i]=='1')R=max(R,rnk[i]);
else L=min(L,rnk[i]);
if(R>L)puts("0");
else printf("%lld\n",(cnt[R]-cnt[L]+mod)%mod);
}
return 0;
}

HNOI2018寻宝游戏的更多相关文章

  1. 【BZOJ5285】[HNOI2018]寻宝游戏(神仙题)

    [BZOJ5285][HNOI2018]寻宝游戏(神仙题) 题面 BZOJ 洛谷 题解 既然是二进制按位的运算,显然按位考虑. 发现这样一个关系,如果是\(or\)的话,只要\(or\ 1\),那么无 ...

  2. 5285: [Hnoi2018]寻宝游戏

    5285: [Hnoi2018]寻宝游戏 链接 分析: 从下面依次确定运算符号,然后在确定的过程中,需要确定的位数会逐渐减少.比如最后有一个1,如果在从下往上确定了一个or 1,那么再往前可以随便选了 ...

  3. BZOJ.5285.[AHOI/HNOI2018]寻宝游戏(思路 按位计算 基数排序..)

    BZOJ LOJ 洛谷 话说vae去年的专辑就叫寻宝游戏诶 只有我去搜Mystery Hunt和infinite corridor了吗... 同样按位考虑,假设\(m=1\). 我们要在一堆\(01\ ...

  4. bzoj 5285: [Hnoi2018]寻宝游戏

    Description Solution 把输入的 \(n\) 个二进制数看作一个大小为 \(n*m\) 的矩阵 把每一列压成一个二进制数,其中最高位是最下面的元素 然后就有了 \(m\) 个二进制数 ...

  5. bzoj千题计划310:bzoj5285: [Hnoi2018]寻宝游戏(思维题+哈希)

    https://www.lydsy.com/JudgeOnline/problem.php?id=5285 |0 和 &1 没有影响 若填‘|’,记为0,若填‘&’,记为1 先只考虑最 ...

  6. [HNOI2018]寻宝游戏

    Description: 给出\(n\)个长为\(m\)的01串,第0个为0,同时给出\(q\)个询问串,每次向其中添加\(n\)个\(\&\)或\(|\)符号,求使这些串按顺序运算得到询问串 ...

  7. 【比赛】HNOI2018 寻宝游戏

    考试的时候就拿了30points滚粗了 听说myy对这题的倒推做法很无奈,官方题解在此 正解思路真的很巧妙,也说的很清楚了 就是分别考虑每一位,会发现题解中的那个性质,然后把询问的二进制数按照排序后的 ...

  8. [HNOI2018]寻宝游戏(题解转载自别处)

    题解(自别处转载): Luogu CSDN 这题关键是将运算符也替换成0,1 然后在运算符与原串混杂里找规律. 而且替换的方式也有所要求,考场上两种替换方式都要尝试. #include <bit ...

  9. 【题解】HNOI2018寻宝游戏

    太厉害啦……感觉看到了正解之后整个人都惊呆了一样.真的很强%%% 首先要注意到一个性质.位运算列与列之间是不会相互影响的,那么我们先观察使一列满足条件的操作序列需要满足什么条件.&0时,不论之 ...

随机推荐

  1. 编程心法 之 怎么选择合适的IDE

    一般情况下,使用IDE进行开发可以极大的提高开发效率 最佳选择 如果语言是GNU开源的则Eclipse,因为Eclipse就是开源的 例如C和C++这样的底层语言并且经典的语言,基于GNU的语言,推荐 ...

  2. vivo7.0以上系统如何无需Root激活Xposed框架的方法

    在较多公司的引流或者业务操作中,基本都需要使用安卓的黑高科技术Xposed框架,几天前我们公司购买了一批新的vivo7.0以上系统,基本都都是基于7.0以上版本,基本都不能够获取Root的su超级权限 ...

  3. WinForm 国际化的一些问题

    国际化 我之前 WinForm 国际化都是凑一些代码搞起(请看文后 Reference). 最近发现还有个官方国际化方法: 首先设置 Form 的 Localizable 属性为 true 选择 Fo ...

  4. rocketmq广播消息

    发布与模式实现.广播就是向一个主题的所有订阅者发送同一条消息. 在发送消息的时候和普通的消息并与不同之处,只是在消费端做一些配置即可. Consumer消息消费 public class Broadc ...

  5. javaFX笔记----ComboBox模仿qq账号下拉框删除账号

    myComboBox.setCellFactory( new Callback<ListView<String>, ListCell<String>>() { @O ...

  6. Activi相关表归纳

    Activi相关归纳总结记录:        ACT_RE_* : 'RE'表示repository.这个前缀的表包含了流程定义和流程静态资源(图片,规则,等等). ACT_RU_* : 'RU'表示 ...

  7. 如何将外部数据库 导入到系统的SQL中

    打开数据库sql管理  在数据库中新建查询  如何输入: exec sp_attach_db @dbname='YourDataBaseName', @filename1='mdf文件路径', @fi ...

  8. python函数与函数式编程

    https://www.cnblogs.com/evablogs/p/6699515.html 在理解函数式编程之前,我还是对函数的调用,参数传递以及函数的嵌套调用一头雾水,还是花了点时间整理了写思绪 ...

  9. 关于SQL Server 数据库归档的一些思考和改进

    一.需求背景 SQL Server开源的归档工具不多,DBA一般都是通过计划任务来触发执行,执行的脚本多是SP或者是SSIS包.SSIS包的性能稍好一些,但是维护更新成本高些.所以更常见的是通过SP脚 ...

  10. Swift构造

    构造就是将结构体.类或枚举的实例准备好以便使用的过程.这个过程包括: (1)为实例中的每个存储属性设置初始值. (2)执行必要的准备和初始化工作. 实例的构造过程是通过构造器来完成的. 可以在结构体. ...