Modern Algebra 读书笔记
Modern Algebra 读书笔记
Introduction
本文是Introduction to Modern Algebra(David Joyce, Clark University)的读书笔记。
符号(Notation)
Notation | Meaning |
---|---|
\(\mathbb{N}\) | natural numbers |
\(\mathbb{Z}\) | for Zahlen, integers |
\(\mathbb{Q}\) | for Quotient, rational numbers |
\(\mathbb{R}\) | real numbers |
\(\mathbb{C}\) | complex numbers |
\(\cong\) | isomorphism |
\(\mid\) | divisibility |
\(\equiv\) | equivalence relation |
\(\equiv \text{ (mod n)}\) | congruence module n |
\(\mathbb{H}\) | Quaternions |
\(\mathcal{G}\) | category of groups |
\(\mathcal{R}\) | category of rings |
\(\mathcal{S}\) | category of sets |
术语
特征元素(identity element)
别名:neutral element.
For a binary operation is an element in the set that doesn't change the value of other elements when combined with then under the operation.
0 is the identity element for addition.
1 is the identity element for multiplication.Inverse elements
For addition, -x is the inverse element of x, since -x + x = 0.
For multiplication, 1/x is the inverse element of x, since 1/x * x = 1.Algebraic structure
an algebraic structure is a set (called carrier set or underlying set) with one or more finitary operations defined on it that satisfies a list of axioms.
代数结构的比较概念
态射(morphism)
记做:$f : A \to B $。可以认为是两个域(domain)或集合中元素的映射关系。
这个词太哲学化,在数学上的含义,可以简单地理解为映射函数。有人用 morphism = arrow + function。
在抽象代数中讨论了一个集合间映射函数的关系。同构(isomorphisms)
代数结构A和B相同,除了它们的元素有不同的名字,可以认为这两个代数结构同构,记做:$f : A \cong B $。同态(homomorphisms)
代数结构A和B不同,但是存在一种元素的映射关系,可以认为这两个代数结构同态,记做:$f : A \to B $。单同态(monomorphisms)
当同态函数$f : A \to B $是一个单射(injective)函数,称之为一个单同态。满同态(epimorphisms)
当同态函数$f : A \to B $是一个满射(surjective)函数,称之为一个满同态。自同态(endomorphisms)
如果一个代数结构A和自己同态,$f : A \to A $,称之为自同态。自同构,自守(automorphisms)
如果一个代数结构A和自己同构,$f : A \cong A $,称之为自同构。单射(injection(one-to-one))
值域(codomain)中的每个元素最多只有一个主域(domain)元素与之对应的函数。满射(surjection(onto))
值域(codomain)中的每个元素最少有一个主域(domain)元素与之对应的函数。双射(bijection(one-to-one + onto))
值域(codomain)中的每个元素都有一个(且只有一个)主域(domain)元素与之对应的函数。
代数结构 - 域(Field)
- 域(Field)
一个域由一个集合和对应的操作组成。具有以下性质:- 有二元操作:addition, multiplication。(具有封闭性。)
- addition 具有 commutativity 和 associativity。
- multiplication 具有 commutativity 和 associativity。
- multiplication 在 addition 上具有 distributivity。
- addition 的 identity element是0,每个元素都有addition的反元素。
- multiplication 的 identity element是1,每个元素(0除外)都有multiplication的反元素。
\(0 \neq 1\)
非正式的说,域具有加减乘除四个操作。
Subtraction
The different of tow elements x and y is defined as $ x - y = x + (-y) $.Division
The quotient of tow elements x and a nonzero element y is defined as $ xy^{-1} = x / y $.同余模于n(congruence modulo n)
两个整数 x 和 y 同余模于n,就是说n可以被x-y的差整除。记做:\(x \equiv y (mod n)\).循环环\(Z_n\)(The cyclic ring \(Z_n\))
\(Z_n\) is a set of equivalence classes of integers under the equivalence relation which is congruence modulo n.
有两种理解方式:
A: 认为\(Z_n\)的元素是 0 到 n-1,任何操作的结果,需要对n求余,匹配到0到n-1这个范围。
\(Z_6 = {0, 1, 2, 3, 4, 5}\)。
B: 每个整数通过求余数,被重命名为一个新的整数。
\(Z_n\)也可以表示为:\(Z_6 = {-2, -1, 0, 1, 2, 3}\)。
环的特征值(The characteristic of a ring)
如果1的某个倍数是0,这个最小倍数就是这个环的特征值。如果在一个环中,1的倍数总不是0,则这个环的特征值为0。定理: The cyclic ring \(Z_n\) is a field if and only if n is a prime.
当且仅当循环环的特征值是一个质数时,这个循环环是一个域。代数数(algebraic numbers)
如果一个数是一个有理数系数的多项式的解,则这个数是代数数。超越数(transcendental numbers)
如果一个数不是任何有理数系数的多项式的解,则这个数是超越数。代数式域扩张(algebraic field extensions)
如果\(x\)满足多项式\(f(x) = 0\),多项式\(f\)的系数在域\(F\),则\(x\)是在\(F\)的代数。
所有的\(x\)组成域\(F'\),被称为\(F\)的域扩张。
域扩张仍是一个域。超越式域扩张(transcendental field extensions)
如果\(F\)的域扩张不是代数式的,则这个域扩张为超越式域扩张。共轭(conjugation)
符号:\(\overline{C}\)
Complex conjugation: \(\overline{x + yi} = x - yi\)
\(\overline{a + b} = \overline{a} + \overline{b}\)
\(\overline{ab} = \overline{a} \overline{b}\)基(norm)
\(|z|^2 = z \overline{z}\)A matrix representation of C
\[
\begin{bmatrix}
x & y \\
-y & x
\end{bmatrix}
\ where \ x, y \in R
\]- 有序域(ordered fields)
An ordered field consists of a field F along with a subset P whose elements are called positive such that
- F is partitioned into three parts: P, {0} and N where
\[
N = {x \in F | - x \in P}
\]
the elements of N are called negative; - the sum of tow positive elements is positive;
- the product of two positive elements is positive.
环(Ring)
- 环(Ring)
一个环由一个集合和对应的操作组成。具有以下性质:- 有二元操作:addition, multiplication。(具有封闭性。)
- addition 具有 commutativity 和 associativity。
- multiplication 具有 associativity。
- multiplication 在 addition 上具有 distributivity。
- addition 的 identity element是0,每个元素都有addition的反元素。
multiplication 的 identity element是1。
非正式的说,环具有加减乘三个操作。
交换性环(commutative ring)
如果一个环的乘法具有 commutativity,这个环是交换性环(commutative ring)。幂等(Idempotent)
当一个元素e,有\(e^2 = e\),则这个元素是幂等的。0因子(zero-divisor)
在一个具有交换性的环中,对于一个非0元素x,如果存在一个非0元素y,有\(xy = 0\),则元素x为0因子。整环(Integral Domain)
整环是一个具有交换性的环D,在环D中,\(0 \neq 1\),满足条件:
1:没有0因子(zero-divisors),
2:或者满足消除律。
条件1和2实际上是等价的。对于Z[n],就是n为质数的环。
定理(Wedderburn):有限元素的整环是一个域。(因为任何非0元素都有乘法反元素)高斯整数(Gaussian Integers), Z[i]
\(x + yi \text{ where } x, y \in \mathbb{Z}\)是一个整环(Integral Domain)。艾森斯坦整数(Eisenstein Integers), Z[i]
\(x + y \omega \text{ where } \omega = \frac{1}{2} ( -1 + i \sqrt{3}) = e^{2\pi i/3}\)是一个整环(Integral Domain)。
布尔环
将逻辑理论带入代数环理论中:
\[
1 = true \\
0 = false \\
xy = P \land Q \\
x + y = P \oplus Q \\
x + y + xy = P \lor Q \\
1 + x = \lnot P
\]
Boolean Rings
An element e of a ring is said to be idempotent which \(e^2 = e\). If every element in a ring is idempotent, then the ring is called a Boolean ring.我的理解是:布尔环的每个元素的值要么是0(false),要么是1(true)。因为只有0和1的平方才等于自身(幂等)。
当然,在一个布尔环中允许0和1以外的元素存在,这些元素对应逻辑理论中的命题(proposition),命题常量,或者也可以是谓词(predicate)等。
核(Kernels),理想(ideal)和商环(quotient rings)
环同态的核(Kernels of ring homomorphisms)
在一个同态映射中,值域(codomain)是0的域(domain)元素集合。
Let \(f : R \to S\) be a ring homomorphism. Those elements of R that are sent to 0 in S form the kernel of f.
\(Ker \ f = f^{-1}(0) = {x \in R | f(x) = 0}\)环的理想(ideal of a ring)
一个环R的理想I:
1) includes 0
2) 对加法具有封闭性。
3) 与R中任何元素的乘积结果具有在理想I中的封闭性。
\(0 \in I, I + I \subseteq I, IR \subseteq I, RI \subseteq I\){0} is always an ideal in a ring R. It's called the trivial ideal.
A proper ideal is an ideal \(I \neq R\).- Principle ideals
$$
(a) = {xa | x \in R} \
where
\text{a is an element of a commutative ring R.}
$$
{0} = (0)
R = (1)
- 商环(Quotient rings R/\(\equiv\), R/I)
环的的同余(congruence \(\equiv\))关系。
The congruence on a ring R is an equivalence relation such that for all \(x, x', y, y' \in R\),
\(x \equiv x' \ and \ y \equiv y' \ imply \ x + y \equiv x' + y' \ and \ xy \equiv x'y'\)
x and x' is called congruence classes.定理:理想的同余模(Congruence modulo an ideal)
Let I be an ideal of a ring R, A congruence, call congruence module I, is defined by
\(x \equiv y (mod I) if and only if x - y \in I\)
THe quotient ring, R/\(\equiv\), is denoted R/I.
群(Group)
- 群(Group)
一个群由一个集合和对应的操作组成。具有以下性质:- 有一个二元操作:addition or multiplication。(具有封闭性。)
- the binary operation 具有 associativity。
- the binary operation 的 identity element是0 or 1,
每个元素都有反元素。
非正式的说,群具有加减两个操作,或者乘除两个操作。
- 子群(subgroup)
子群H是群G的子集,并且满足:- 有1,
- 乘法具有封闭性
- 反元素具有封闭性
循环群(cyclic groups and subgroups)
A group or a subgroup is generated by some element a:
\(\left \langle a \right \rangle = {a^n | n \in \mathbb{z}}\)阶(the order of a group)
一个群的阶就是它元素的数量,表示为\(|G|\)。
一个群元素 a 的阶是天河最小正整数n,使得\(a^n = 1\)。Involution
An involution a is an element of a group which is its own inverse, \(a^{-1} = a\)。协作集合(coset)
Let H be a subgroup of G, A left coset a set of the form
\(aH = {ah | h \in H}\)
while a right coset is of the form \(Ha = {ha | h \in H}\).
算术概念
单位根(root of unity)
一个复数,在正整数次方后的结果是1。n的基本单位根(primitive nth root of unity)
对于等式\(z^n = 1\),使z的正整数次方等于1的最小整数n,则z为\(n^{th}\) primitive root of unity。
\(\phi(n)\)的n的基本单位根的个数。分圆多项式(Cyclotomic polynomial)
n的基本单位根的求解多项式。
The polynomial \(\Phi_n(z) = \prod_{k=1}^{\phi(n)}(z - z_k)\), where \(z_1, z_2, \dots, z_{\phi(n)}\) are the primitive \(n^{th}\) roots of unity, is called the \(n^{th}\) cyclotomic polynomial.代数数(algebraic number)
代数数是一个复数,并且是一个具有整数系数的一元多项式的根。超越数(transcendental number)
与代数数相反,超越数不会是一个具有整数系数的一元多项式的根。
几乎所有的的实数和复数都是超越数。
逻辑
自反性 - Law of Reflexivity: Everything is equal to itself
x = x.对称性 - Law of Symmetry
If x = y, then y = x.传递性 - Law of Transitivity
If x = y and y = z, then x = z命题(Proposition)
谓词(Predicate)
a predicate is a statement that may be true or false depending on the values of its variables.
P(x) is referred to as the predicate, and x the subject of the proposition. Sometimes, P(x) is also called a propositional function
中英文对照
English | 中文 |
---|---|
addition | 加 |
subtraction | 减 |
multiplication | 乘 |
division | 除 |
negation | 非 |
reciprocation | 倒数 |
power | 次方 |
root | 根 |
commutativity | 交换性 |
associativity | 结合性 |
distributivity | 分配性 |
axiom | 公理 |
theorem | 定理 |
lemma | 引理 |
corollary | 推论 |
polynomial | 多项式 |
denominator | 分母 |
divisor | 除数,因子 |
quotient | 商 |
modulus | 模数 |
coefficient | 系数 |
disjoint | 互斥 |
prime number | 质数 |
composite number | 合数 |
relatively prime | 互质 |
greatest common divisor | 最大公约数 |
least common multiple | 最小公倍数 |
References
- Introduction to Modern Algebra(David Joyce, Clark University)
- Bijection, injection and surjection
Modern Algebra 读书笔记的更多相关文章
- [C++11] Effective Modern C++ 读书笔记
本文记录了我读Effective Modern C++时自己的一些理解和心得. item1:模板类型推导 1)reference属性不能通过传值参数传入模板函数.这就意味着如果模板函数需要一个refe ...
- 【英语魔法俱乐部——读书笔记】 2 中级句型-复句&合句(Complex Sentences、Compound Sentences)
[英语魔法俱乐部——读书笔记] 2 中级句型-复句&合句(Complex Sentences.Compound Sentences):(2.1)名词从句.(2.2)副词从句.(2.3)关系从句 ...
- 读书笔记汇总 - SQL必知必会(第4版)
本系列记录并分享学习SQL的过程,主要内容为SQL的基础概念及练习过程. 书目信息 中文名:<SQL必知必会(第4版)> 英文名:<Sams Teach Yourself SQL i ...
- 读书笔记--SQL必知必会18--视图
读书笔记--SQL必知必会18--视图 18.1 视图 视图是虚拟的表,只包含使用时动态检索数据的查询. 也就是说作为视图,它不包含任何列和数据,包含的是一个查询. 18.1.1 为什么使用视图 重用 ...
- 《C#本质论》读书笔记(18)多线程处理
.NET Framework 4.0 看(本质论第3版) .NET Framework 4.5 看(本质论第4版) .NET 4.0为多线程引入了两组新API:TPL(Task Parallel Li ...
- C#温故知新:《C#图解教程》读书笔记系列
一.此书到底何方神圣? 本书是广受赞誉C#图解教程的最新版本.作者在本书中创造了一种全新的可视化叙述方式,以图文并茂的形式.朴实简洁的文字,并辅之以大量表格和代码示例,全面.直观地阐述了C#语言的各种 ...
- C#刨根究底:《你必须知道的.NET》读书笔记系列
一.此书到底何方神圣? <你必须知道的.NET>来自于微软MVP—王涛(网名:AnyTao,博客园大牛之一,其博客地址为:http://anytao.cnblogs.com/)的最新技术心 ...
- Web高级征程:《大型网站技术架构》读书笔记系列
一.此书到底何方神圣? <大型网站技术架构:核心原理与案例分析>通过梳理大型网站技术发展历程,剖析大型网站技术架构模式,深入讲述大型互联网架构设计的核心原理,并通过一组典型网站技术架构设计 ...
- LOMA280保险原理读书笔记
LOMA是国际金融保险管理学院(Life Office Management Association)的英文简称.国际金融保险管理学院是一个保险和金融服务机构的国际组织,它的创建目的是为了促进信息交流 ...
随机推荐
- Column Addition~DP(脑子抽了,当时没有想到)
Description A multi-digit column addition is a formula on adding two integers written like this:
- Spring Security入门(3-3)Spring Security 手工配置并注入 authenticationProvider 和 异常信息传递
特别注意的是 这样就能保证抛出UsernameNotFoundException时,前台显示出错信息: 另外,ps:
- maven常见问题处理(3-3)Gradle编译时下载依赖失败解决方法
Gradle编译时在本地仓库中如果没有发现依赖,就会从远程仓库中下载, 默认的远程仓库为 mavenCentral(),即 http://repo1.maven.org/maven2/往往访问速度特别 ...
- Python 爬取淘宝商品信息和相应价格
!只用于学习用途! plt = re.findall(r'\"view_price\"\:\"[\d\.]*\"',html) :获得商品价格和view_pri ...
- spring6——AOP的编程术语
面向切面编程作为一种编程思想,允许我们对程序的执行流程及执行结果动态的做出改变,以达到业务逻辑之间的分层管理或者是目标对象方法的增强,spring框架很好的实现了这种编程思想,让我们可以对主业务逻辑和 ...
- 深入理解Javascript单线程谈Event Loop
假如面试回答js的运行机制时,你可能说出这么一段话:"Javascript的事件分同步任务和异步任务,遇到同步任务就放在执行栈中执行,而碰到异步任务就放到任务队列之中,等到执行栈执行完毕之后 ...
- Django Form组件 学生管理系统
from django.db import models # Create your models here. class Classes(models.Model): title=models.Ch ...
- POJ-2253 Frogger---最短路变形&&最大边的最小值
题目链接: https://vjudge.net/problem/POJ-2253 题目大意: 青蛙A想访问青蛙B,必须跳着石头过去,不幸的是,B所在的石头太远了,需要借助其他的石头,求从A到B的路径 ...
- UVA-10037 Bridge---过河问题进阶版(贪心)
题目链接: https://vjudge.net/problem/UVA-10037 题目大意: N个人夜里过河,总共只有一盏灯,每次最多过两个人,然后需要有人将灯送回 才能继续过人,每个人过桥都需要 ...
- 在vue项目中, mock数据
1. 在根目录下创建 test 目录, 用来存放模拟的 json 数据, 在 test 目录下创建模拟的数据 data.json 文件 2.在build目录下的 dev-server.js的文件作如下 ...