numpy.cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None)[source]

Estimate a covariance matrix, given data and weights.

Covariance indicates the level to which two variables vary together. If we examine N-dimensional samples, , then the covariance matrix element  is the covariance of  and . The element  is the variance of .

See the notes for an outline of the algorithm.

Parameters:

m : array_like

A 1-D or 2-D array containing multiple variables and observations. Each row (行) of m represents a variable(变量), and each column(列) a single observation of all those variables(样本). Also see rowvar below.

y : array_like, optional

An additional set of variables and observations. y has the same form as that of m.

rowvar : bool, optional

If rowvar is True (default), then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations.

bias : bool, optional

Default normalization (False) is by (N - 1), where N is the number of observations given (unbiased estimate). If bias is True, then normalization is by N. These values can be overridden by using the keyword ddof in numpy versions >= 1.5.

ddof : int, optional

If not None the default value implied by bias is overridden. Note that ddof=1 will return the unbiased estimate, even if both fweights and aweights are specified, and ddof=0 will return the simple average. See the notes for the details. The default value is None.

New in version 1.5.

fweights : array_like, int, optional

1-D array of integer freguency weights; the number of times each observation vector should be repeated.

New in version 1.10.

aweights : array_like, optional

1-D array of observation vector weights. These relative weights are typically large for observations considered “important” and smaller for observations considered less “important”. If ddof=0 the array of weights can be used to assign probabilities to observation vectors.

New in version 1.10.

Returns:

out : ndarray

The covariance matrix of the variables.

See also

corrcoef
Normalized covariance matrix

Notes

Assume that the observations are in the columns of the observation array m and let f = fweights and a = aweights for brevity. The steps to compute the weighted covariance are as follows:

>>> w = f * a
>>> v1 = np.sum(w)
>>> v2 = np.sum(w * a)
>>> m -= np.sum(m * w, axis=1, keepdims=True) / v1
>>> cov = np.dot(m * w, m.T) * v1 / (v1**2 - ddof * v2)

Note that when a == 1, the normalization factor v1 / (v1**2 - ddof * v2) goes over to 1 / (np.sum(f) - ddof) as it should.

Examples

Consider two variables,  and , which correlate perfectly, but in opposite directions:

>>> x = np.array([[0, 2], [1, 1], [2, 0]]).T
>>> x
array([[0, 1, 2],
[2, 1, 0]])

Note how  increases while  decreases. The covariance matrix shows this clearly:

>>> np.cov(x)
array([[ 1., -1.],
[-1., 1.]])

Note that element , which shows the correlation between  and , is negative.

Further, note how x and y are combined:

>>> x = [-2.1, -1,  4.3]
>>> y = [3, 1.1, 0.12]
>>> X = np.stack((x, y), axis=0)
>>> print(np.cov(X))
[[ 11.71 -4.286 ]
[ -4.286 2.14413333]]
>>> print(np.cov(x, y))
[[ 11.71 -4.286 ]
[ -4.286 2.14413333]]
>>> print(np.cov(x))
11.71

总结

理解协方差矩阵的关键就在于牢记它的计算是不同维度之间的协方差,而不是不同样本之间。拿到一个样本矩阵,最先要明确的就是一行是一个样本还是一个维度,心中明确整个计算过程就会顺流而下,这么一来就不会迷茫了。

numpy协方差矩阵numpy.cov的更多相关文章

  1. numpy入门—numpy是什么

    numpy是什么?为什么使用numpy 使用numpy库与原生python用于数组计算性能对比

  2. Python的 numpy中 numpy.ravel() 和numpy.flatten()的区别和使用

    两者所要实现的功能是一致的(将多维数组降为一维), 两者的区别在于返回拷贝(copy)还是返回视图(view),numpy.flatten() 返回一份拷贝,对拷贝所做的修改不会影响(reflects ...

  3. Python 关于数组矩阵变换函数numpy.nonzero(),numpy.multiply()用法

    1.numpy.nonzero(condition),返回参数condition(为数组或者矩阵)中非0元素的索引所形成的ndarray数组,同时也可以返回condition中布尔值为True的值索引 ...

  4. numpy.ravel()/numpy.flatten()/numpy.squeeze()

    numpy.ravel(a, order='C') Return a flattened array numpy.chararray.flatten(order='C') Return a copy ...

  5. 【numpy】新版本中numpy(numpy>1.17.0)中的random模块

    numpy是Python中经常要使用的一个库,而其中的random模块经常用来生成一些数组,本文接下来将介绍numpy中random模块的一些使用方法. 首先查看numpy的版本: import nu ...

  6. NumPy之:NumPy简介教程

    目录 简介 安装NumPy Array和List 创建Array Array操作 sort concatenate 统计信息 reshape 增加维度 index和切片 从现有数据中创建Array 算 ...

  7. numpy入门—Numpy的核心array对象以及创建array的方法

    Numpy的核心array对象以及创建array的方法 array对象的背景: Numpy的核心数据结构,就叫做array就是数组,array对象可以是一维数组,也可以是多维数组: Python的Li ...

  8. 使用numpy实现批量梯度下降的感知机模型

    生成多维高斯分布随机样本 生成多维高斯分布所需要的均值向量和方差矩阵 这里使用numpy中的多变量正太分布随机样本生成函数,按照要求设置均值向量和协方差矩阵.以下设置两个辅助函数,用于指定随机变量维度 ...

  9. python(5):scipy之numpy介绍

    python 的scipy 下面的三大库: numpy, matplotlib, pandas scipy 下面还有linalg 等 scipy 中的数据结构主要有三种: ndarray(n维数组), ...

随机推荐

  1. Go中error类型的nil值和nil

    https://my.oschina.net/chai2010/blog/117923

  2. Dubbo -- 系统学习 笔记 -- 示例 -- 集群容错

    Dubbo -- 系统学习 笔记 -- 目录 示例 想完整的运行起来,请参见:快速启动,这里只列出各种场景的配置方式 集群容错 在集群调用失败时,Dubbo提供了多种容错方案,缺省为failover重 ...

  3. UDP通信-UdpClient

    static void Main(string[] args) { Console.WriteLine("发送端"); byte[] buffer = System.Text.En ...

  4. weblogic上部署项目出错

    一. Unable to access the selected application. Exception in AppMerge flows' progression Exception in ...

  5. Python爬虫学习笔记-2.Requests库

    Requests是Python的一个优雅而简单的HTTP库,它比Pyhton内置的urllib库,更加强大. 0X01 基本使用 安装 Requests,只要在你的终端中运行这个简单命令即可: pip ...

  6. Django SimpleCMDB WSGI

    一.WSGI 介绍 (1) 在前面的学习中,我们是通过 python manage.py runserver 0.0.0.0:8000 来启动并访问开发服务器的:(2) 但在实际中我们是通过直接访问 ...

  7. Qt Creator build遇到error lnk1158 无法运行rc.exe

    解决办法: 将C:\Program Files (x86)\Windows Kits\10\bin\10.0.15063.0\x64 目录下的rc.exe 和rcdll.dll 复制到 C:\Prog ...

  8. 深入浅出MongoDB应用实战开发

    写在前面的话: 这篇文章会有点长,谨此记录自己昨天一整天看完<深入浅出MongoDB应用实战开发>视频时的笔记.只是在开始,得先抛出一个困扰自己很长时间的问题:“带双引号的和不带双引号的j ...

  9. MySQL按照汉字拼音首字母排序

    按照汉字的拼音排序,用的比较多是在人名的排序中,按照姓氏的拼音字母,从A到Z排序: 如果存储姓名的字段采用的是GBK字符集,那就好办了,因为GBK内码编码时本身就采用了拼音排序的方法(常用一级汉字37 ...

  10. Cent OS 常用命令搜集

    打开一个 Shadowsocks 配置文件nano /etc/shadowsocks.json 重启 Shadowsocks/etc/init.d/shadowsocks restart centos ...