1. K-Means原理解析
1. K-Means原理解析
2. K-Means的优化
3. sklearn的K-Means的使用
4. K-Means和K-Means++实现
1. 前言
我们在一开始的时候应该就说过,机器学习按照有无标签可以分为“监督学习”和“非监督学习”。
监督学习里面的代表算法就是:SVM、逻辑回归、决策树、各种集成算法等等。
非监督学习主要的任务就是通过一定的规则,把相似的数据聚集到一起,简称聚类。我们今天讲的K-Means算法是在非监督学习比较容易理解的一个算法,也是聚类算法中最著名的算法。
2. K-Means原理
K-Means是典型的聚类算法,K-Means算法中的k表示的是聚类为k个簇,means代表取每一个聚类中数据值的均值作为该簇的中心,或者称为质心,即用每一个的类的质心对该簇进行描述。
2.1 K-Means步骤
- 创建k个点作为起始质心。
- 计算每一个数据点到k个质心的距离。把这个点归到距离最近的哪个质心。
- 根据每个质心所聚集的点,重新更新质心的位置。
- 重复2,3,直到前后两次质心的位置的变化小于一个阈值。
整个变化的过程如果用图呈现出来会形象很多,下面的图就是k=2的K-Means的过程:
2.2 K值的确定
K-Means算法一般都只有一个超参数,就是K。那我们拿到一个数据后,要吧数据分成几类呢?我们就来讨论下这个问题。
- 首先一个具体的问题肯定有它的具体的业务场景,K值需要根据业务场景来定义。
- 如果业务场景无法确定K值,我们也有技术手段来找一个合适的K。这个方法就是手肘法。
2.3 手肘法
K-Means算法中每一步都可以计算出loss值又称为SSE。loss值的计算方式就是每个聚类的点到它们质心的距离的平方。
\[
SSE = \sum\limits_{i=1}^k\sum\limits_{x \in C_i} |x-\mu_i|^2
\]
指定一个Max值,即可能的最大类簇数。然后将类簇数K从1开始递增,一直到Max,计算出Max个SSE。根据数据的潜在模式,当设定的类簇数不断逼近真实类簇数时,SSE呈现快速下降态势,而当设定类簇数超过真实类簇数时,SSE也会继续下降,当下降会迅速趋于缓慢。通过画出K-SSE曲线,找出下降途中的拐点,即可较好的确定K值。
这样手肘图的拐点应该是k=4的时候,所以我们可以定k=4的时候聚类效果比较好。
3. K-Means与KNN
初学者很容易把K-Means和KNN搞混,两者其实差别还是很大的。
K-Means是无监督学习的聚类算法,没有样本输出;而KNN是监督学习的分类算法,有对应的类别输出。KNN基本不需要训练,对测试集里面的点,只需要找到在训练集中最近的k个点,用这最近的k个点的类别来决定测试点的类别。而K-Means则有明显的训练过程,找到k个类别的最佳质心,从而决定样本的簇类别。
当然,两者也有一些相似点,两个算法都包含一个过程,即找出和某一个点最近的点。两者都利用了最近邻(nearest neighbors)的思想。
4. 总结
K-Means的原理是很简单,但是我们仔细想想我们处理K-Means的思想好想和别的方法不太一样。我们是先去猜想我们想要的结果,然后根据这个猜想去优化损失函数,再重新调整我们的猜想,一直重复这两个过程。
其实这个猜想就是我们要求出的隐藏变量,优化损失函数的过程,就是最大化释然函数的过程。K-Means的算法就是一个EM算法的过程。
1. K-Means原理解析的更多相关文章
- 【算法】(查找你附近的人) GeoHash核心原理解析及代码实现
本文地址 原文地址 分享提纲: 0. 引子 1. 感性认识GeoHash 2. GeoHash算法的步骤 3. GeoHash Base32编码长度与精度 4. GeoHash算法 5. 使用注意点( ...
- Skinned Mesh原理解析和一个最简单的实现示例
Skinned Mesh 原理解析和一个最简单的实现示例 作者:n5 Email: happyfirecn##yahoo.com.cn Blog: http://blog.csdn.net/n5 ...
- (转)HashMap深入原理解析
[HashMap]深入原理解析 分类: 数据结构 自考 equals与“==”(可以参考自己的另一篇博文) 1,基本数据类型(byte,short,char,int,long,float,double ...
- 2. Attention Is All You Need(Transformer)算法原理解析
1. 语言模型 2. Attention Is All You Need(Transformer)算法原理解析 3. ELMo算法原理解析 4. OpenAI GPT算法原理解析 5. BERT算法原 ...
- 3. ELMo算法原理解析
1. 语言模型 2. Attention Is All You Need(Transformer)算法原理解析 3. ELMo算法原理解析 4. OpenAI GPT算法原理解析 5. BERT算法原 ...
- 【转】C# URL短地址压缩算法及短网址原理解析
这篇文章主要介绍了C# URL短地址压缩算法及短网址原理解析,本文重点给出了算法代码,需要的朋友可以参考下 短网址应用已经在全国各大微博上开始流行了起来.例如QQ微博的url.cn,新郎的sinaur ...
- 基于OpenCV进行图像拼接原理解析和编码实现(提纲 代码和具体内容在课件中)
一.背景 1.1概念定义 我们这里想要实现的图像拼接,既不是如题图1和2这样的"图片艺术拼接",也不是如图3这样的"显示拼接",而是实现类似"BaiD ...
- ThreadLocal系列(一)-ThreadLocal的使用及原理解析
ThreadLocal系列之ThreadLocal(源码基于java8) 项目中我们如果想要某个对象在程序运行中的任意位置获取到,就需要借助ThreadLocal来实现,这个对象称作线程的本地变量,下 ...
- (转)Apache和Nginx运行原理解析
Apache和Nginx运行原理解析 原文:https://www.server110.com/nginx/201402/6543.html Web服务器 Web服务器也称为WWW(WORLD WID ...
随机推荐
- POJ 3253 Fence Repair (哈夫曼树)
Fence Repair Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 19660 Accepted: 6236 Des ...
- 使用Delphi实现票据精确打印
一.概述在银行,税务,邮政等行业的实际工作中,经常涉及到在印刷好具有固定格式的汇款单,储蓄凭证,税票等单据上的确定位置打印输出相关的信息.在此类需求中,精确地定位单据并打印相关信息,是解决问题的关键. ...
- perl进程管理一例
#!/usr/bin/perl -w use strict; use warnings; use DBI; #### # 这里进行服务器任务管理 ## #字符串映射函数 our %actions = ...
- Leetcode 编程训练
Leetcode这个网站上的题都是一些经典的公司用来面试应聘者的面试题,很多人通过刷这些题来应聘一些喜欢面试算法的公司,比如:Google.微软.Facebook.Amazon之类的这些公司,基本上是 ...
- Database Vault Administrator的使用
第一次安装Database Vault的时候,先安装好了Database Vault.然后才安装的EM.发现,根本无法訪问<span><span>Database Vault ...
- 纯干货,Spring-data-jpa详解(转)
本篇进行Spring-data-jpa的介绍,几乎涵盖该框架的所有方面,在日常的开发当中,基本上能满足所有需求.这里不讲解JPA和Spring-data-jpa单独使用,所有的内容都是在和Spring ...
- jenkins执行shell命令提示找不到命令解决办法
用jenkins执行shell脚本,执行一条命令: #唤醒休眠手机 adb shell input keyevent 提示: [adb] $ /bin/sh -xe /Users/xxxxx/tool ...
- ipod classic 检查硬盘方法
长按(中间键+MENU)重启接着按(中键+左键)一直进入工程模式进入后顺序是:menu-IO-HARDDRIVE-HDSMARTDATA 就可以看到了. retracts--硬盘磁头非正常退回,比如硬 ...
- git 权限问题:insufficient permission for adding an object to repository database .git
在git pull 的时候报错:insufficient permission for adding an object to repository database .git (去仓库里的objec ...
- SpringMVC 封装返回结果对象
/*** *请求返回的最外层对象 **/ public class Result<T>{ /*错误码*/ private Integer code; /*提示信息*/ private St ...