PCA(Principal Component Analysis)不仅仅是对高维数据进行降维,更重要的是经过降维去除了噪声,发现了数据中的模式。

PCA把原先的n个特征用数目更少的m个特征取代,新特征是旧特征的线性组合,这些线性组合最大化样本方差,尽量使新的m个特征互不相关。从旧特征到新特征的映射捕获数据中的固有变异性。

预备知识

样本X和样本Y的协方差(Covariance):

Cov(X,Y)=∑ni=1(Xi−X¯¯¯¯)(Yi−Y¯¯¯¯)(n−1)Cov(X,Y)=∑i=1n(Xi−X¯)(Yi−Y¯)(n−1)

协方差为正时说明X和Y是正相关关系,协方差为负时X和Y是负相关关系,协方差为0时X和Y相互独立。

Cov(X,X)就是X的方差(Variance).

当样本是n维数据时,它们的协方差实际上是协方差矩阵(对称方阵),方阵的边长是C2nCn2。比如对于3维数据(x,y,z),计算它的协方差就是:

C=cov(x,x)cov(y,x)cov(z,x)cov(x,y)cov(y,y)cov(z,y)cov(x,z)cov(y,z)cov(z,z)C=cov(x,x)cov(x,y)cov(x,z)cov(y,x)cov(y,y)cov(y,z)cov(z,x)cov(z,y)cov(z,z)

若AX=λXAX=λX,则称λλ是A的特征值,X是对应的特征向量。实际上可以这样理解:矩阵A作用在它的特征向量X上,仅仅使得X的长度发生了变化,缩放比例就是相应的特征值λλ。

当A是n阶可逆矩阵时,A与P-1Ap相似,相似矩阵具有相同的特征值。

特别地,当A是对称矩阵时,A的奇异值等于A的特征值,存在正交矩阵Q(Q-1=QT),使得:

对A进行奇异值分解就能求出所有特征值和Q矩阵。

A∗Q=Q∗DA∗Q=Q∗D,D是由特征值组成的对角矩阵

由特征值和特征向量的定义知,Q的列向量就是A的特征向量。

Jama包

Jama包是用于基本线性代数运算的java包,提供矩阵的cholesky分解、LUD分解、QR分解、奇异值分解,以及PCA中要用到的特征值分解,此外可以计算矩阵的乘除法、矩阵的范数和条件数、解线性方程组等。

PCA过程

1.特征中心化。即每一维的数据都减去该维的均值。这里的“维”指的就是一个特征(或属性),变换之后每一维的均值都变成了0。

很多数据挖掘的教材上都会讲到鹫尾花的例子,本文就拿它来做计算。原始数据是150×4的矩阵A:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
5.1     3.5     1.4     0.2
4.9     3.0     1.4     0.2
4.7     3.2     1.3     0.2
4.6     3.1     1.5     0.2
5.0     3.6     1.4     0.2
5.4     3.9     1.7     0.4
4.6     3.4     1.4     0.3
5.0     3.4     1.5     0.2
4.4     2.9     1.4     0.2
4.9     3.1     1.5     0.1
5.4     3.7     1.5     0.2
4.8     3.4     1.6     0.2
4.8     3.0     1.4     0.1
4.3     3.0     1.1     0.1
5.8     4.0     1.2     0.2
5.7     4.4     1.5     0.4
5.4     3.9     1.3     0.4
5.1     3.5     1.4     0.3
5.7     3.8     1.7     0.3
5.1     3.8     1.5     0.3
5.4     3.4     1.7     0.2
5.1     3.7     1.5     0.4
4.6     3.6     1.0     0.2
5.1     3.3     1.7     0.5
4.8     3.4     1.9     0.2
5.0     3.0     1.6     0.2
5.0     3.4     1.6     0.4
5.2     3.5     1.5     0.2
5.2     3.4     1.4     0.2
4.7     3.2     1.6     0.2
4.8     3.1     1.6     0.2
5.4     3.4     1.5     0.4
5.2     4.1     1.5     0.1
5.5     4.2     1.4     0.2
4.9     3.1     1.5     0.1
5.0     3.2     1.2     0.2
5.5     3.5     1.3     0.2
4.9     3.1     1.5     0.1
4.4     3.0     1.3     0.2
5.1     3.4     1.5     0.2
5.0     3.5     1.3     0.3
4.5     2.3     1.3     0.3
4.4     3.2     1.3     0.2
5.0     3.5     1.6     0.6
5.1     3.8     1.9     0.4
4.8     3.0     1.4     0.3
5.1     3.8     1.6     0.2
4.6     3.2     1.4     0.2
5.3     3.7     1.5     0.2
5.0     3.3     1.4     0.2
7.0     3.2     4.7     1.4
6.4     3.2     4.5     1.5
6.9     3.1     4.9     1.5
5.5     2.3     4.0     1.3
6.5     2.8     4.6     1.5
5.7     2.8     4.5     1.3
6.3     3.3     4.7     1.6
4.9     2.4     3.3     1.0
6.6     2.9     4.6     1.3
5.2     2.7     3.9     1.4
5.0     2.0     3.5     1.0
5.9     3.0     4.2     1.5
6.0     2.2     4.0     1.0
6.1     2.9     4.7     1.4
5.6     2.9     3.6     1.3
6.7     3.1     4.4     1.4
5.6     3.0     4.5     1.5
5.8     2.7     4.1     1.0
6.2     2.2     4.5     1.5
5.6     2.5     3.9     1.1
5.9     3.2     4.8     1.8
6.1     2.8     4.0     1.3
6.3     2.5     4.9     1.5
6.1     2.8     4.7     1.2
6.4     2.9     4.3     1.3
6.6     3.0     4.4     1.4
6.8     2.8     4.8     1.4
6.7     3.0     5.0     1.7
6.0     2.9     4.5     1.5
5.7     2.6     3.5     1.0
5.5     2.4     3.8     1.1
5.5     2.4     3.7     1.0
5.8     2.7     3.9     1.2
6.0     2.7     5.1     1.6
5.4     3.0     4.5     1.5
6.0     3.4     4.5     1.6
6.7     3.1     4.7     1.5
6.3     2.3     4.4     1.3
5.6     3.0     4.1     1.3
5.5     2.5     4.0     1.3
5.5     2.6     4.4     1.2
6.1     3.0     4.6     1.4
5.8     2.6     4.0     1.2
5.0     2.3     3.3     1.0
5.6     2.7     4.2     1.3
5.7     3.0     4.2     1.2
5.7     2.9     4.2     1.3
6.2     2.9     4.3     1.3
5.1     2.5     3.0     1.1
5.7     2.8     4.1     1.3
6.3     3.3     6.0     2.5
5.8     2.7     5.1     1.9
7.1     3.0     5.9     2.1
6.3     2.9     5.6     1.8
6.5     3.0     5.8     2.2
7.6     3.0     6.6     2.1
4.9     2.5     4.5     1.7
7.3     2.9     6.3     1.8
6.7     2.5     5.8     1.8
7.2     3.6     6.1     2.5
6.5     3.2     5.1     2.0
6.4     2.7     5.3     1.9
6.8     3.0     5.5     2.1
5.7     2.5     5.0     2.0
5.8     2.8     5.1     2.4
6.4     3.2     5.3     2.3
6.5     3.0     5.5     1.8
7.7     3.8     6.7     2.2
7.7     2.6     6.9     2.3
6.0     2.2     5.0     1.5
6.9     3.2     5.7     2.3
5.6     2.8     4.9     2.0
7.7     2.8     6.7     2.0
6.3     2.7     4.9     1.8
6.7     3.3     5.7     2.1
7.2     3.2     6.0     1.8
6.2     2.8     4.8     1.8
6.1     3.0     4.9     1.8
6.4     2.8     5.6     2.1
7.2     3.0     5.8     1.6
7.4     2.8     6.1     1.9
7.9     3.8     6.4     2.0
6.4     2.8     5.6     2.2
6.3     2.8     5.1     1.5
6.1     2.6     5.6     1.4
7.7     3.0     6.1     2.3
6.3     3.4     5.6     2.4
6.4     3.1     5.5     1.8
6.0     3.0     4.8     1.8
6.9     3.1     5.4     2.1
6.7     3.1     5.6     2.4
6.9     3.1     5.1     2.3
5.8     2.7     5.1     1.9
6.8     3.2     5.9     2.3
6.7     3.3     5.7     2.5
6.7     3.0     5.2     2.3
6.3     2.5     5.0     1.9
6.5     3.0     5.2     2.0
6.2     3.4     5.4     2.3
5.9     3.0     5.1     1.8

每一列减去该列均值后,得到矩阵B:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
-0.743333       0.446       -2.35867        -0.998667      
-0.943333       -0.054      -2.35867        -0.998667      
-1.14333        0.146       -2.45867        -0.998667      
-1.24333        0.046       -2.25867        -0.998667      
-0.843333       0.546       -2.35867        -0.998667      
-0.443333       0.846       -2.05867        -0.798667      
-1.24333        0.346       -2.35867        -0.898667      
-0.843333       0.346       -2.25867        -0.998667      
-1.44333        -0.154      -2.35867        -0.998667      
-0.943333       0.046       -2.25867        -1.09867       
-0.443333       0.646       -2.25867        -0.998667      
-1.04333        0.346       -2.15867        -0.998667      
-1.04333        -0.054      -2.35867        -1.09867       
-1.54333        -0.054      -2.65867        -1.09867       
-0.0433333      0.946       -2.55867        -0.998667      
-0.143333       1.346       -2.25867        -0.798667      
-0.443333       0.846       -2.45867        -0.798667      
-0.743333       0.446       -2.35867        -0.898667      
-0.143333       0.746       -2.05867        -0.898667      
-0.743333       0.746       -2.25867        -0.898667      
-0.443333       0.346       -2.05867        -0.998667      
-0.743333       0.646       -2.25867        -0.798667      
-1.24333        0.546       -2.75867        -0.998667      
-0.743333       0.246       -2.05867        -0.698667      
-1.04333        0.346       -1.85867        -0.998667      
-0.843333       -0.054      -2.15867        -0.998667      
-0.843333       0.346       -2.15867        -0.798667      
-0.643333       0.446       -2.25867        -0.998667      
-0.643333       0.346       -2.35867        -0.998667      
-1.14333        0.146       -2.15867        -0.998667      
-1.04333        0.046       -2.15867        -0.998667      
-0.443333       0.346       -2.25867        -0.798667      
-0.643333       1.046       -2.25867        -1.09867       
-0.343333       1.146       -2.35867        -0.998667      
-0.943333       0.046       -2.25867        -1.09867       
-0.843333       0.146       -2.55867        -0.998667      
-0.343333       0.446       -2.45867        -0.998667      
-0.943333       0.046       -2.25867        -1.09867       
-1.44333        -0.054      -2.45867        -0.998667      
-0.743333       0.346       -2.25867        -0.998667      
-0.843333       0.446       -2.45867        -0.898667      
-1.34333        -0.754      -2.45867        -0.898667      
-1.44333        0.146       -2.45867        -0.998667      
-0.843333       0.446       -2.15867        -0.598667      
-0.743333       0.746       -1.85867        -0.798667      
-1.04333        -0.054      -2.35867        -0.898667      
-0.743333       0.746       -2.15867        -0.998667      
-1.24333        0.146       -2.35867        -0.998667      
-0.543333       0.646       -2.25867        -0.998667      
-0.843333       0.246       -2.35867        -0.998667      
1.15667     0.146       0.941333        0.201333       
0.556667        0.146       0.741333        0.301333       
1.05667     0.046       1.14133     0.301333       
-0.343333       -0.754      0.241333        0.101333       
0.656667        -0.254      0.841333        0.301333       
-0.143333       -0.254      0.741333        0.101333       
0.456667        0.246       0.941333        0.401333       
-0.943333       -0.654      -0.458667       -0.198667      
0.756667        -0.154      0.841333        0.101333       
-0.643333       -0.354      0.141333        0.201333       
-0.843333       -1.054      -0.258667       -0.198667      
0.0566667       -0.054      0.441333        0.301333       
0.156667        -0.854      0.241333        -0.198667      
0.256667        -0.154      0.941333        0.201333       
-0.243333       -0.154      -0.158667       0.101333       
0.856667        0.046       0.641333        0.201333       
-0.243333       -0.054      0.741333        0.301333       
-0.0433333      -0.354      0.341333        -0.198667      
0.356667        -0.854      0.741333        0.301333       
-0.243333       -0.554      0.141333        -0.0986667     
0.0566667       0.146       1.04133     0.601333       
0.256667        -0.254      0.241333        0.101333       
0.456667        -0.554      1.14133     0.301333       
0.256667        -0.254      0.941333        0.00133333     
0.556667        -0.154      0.541333        0.101333       
0.756667        -0.054      0.641333        0.201333       
0.956667        -0.254      1.04133     0.201333       
0.856667        -0.054      1.24133     0.501333       
0.156667        -0.154      0.741333        0.301333       
-0.143333       -0.454      -0.258667       -0.198667      
-0.343333       -0.654      0.0413333       -0.0986667     
-0.343333       -0.654      -0.0586667      -0.198667      
-0.0433333      -0.354      0.141333        0.00133333     
0.156667        -0.354      1.34133     0.401333       
-0.443333       -0.054      0.741333        0.301333       
0.156667        0.346       0.741333        0.401333       
0.856667        0.046       0.941333        0.301333       
0.456667        -0.754      0.641333        0.101333       
-0.243333       -0.054      0.341333        0.101333       
-0.343333       -0.554      0.241333        0.101333       
-0.343333       -0.454      0.641333        0.00133333     
0.256667        -0.054      0.841333        0.201333       
-0.0433333      -0.454      0.241333        0.00133333     
-0.843333       -0.754      -0.458667       -0.198667      
-0.243333       -0.354      0.441333        0.101333       
-0.143333       -0.054      0.441333        0.00133333     
-0.143333       -0.154      0.441333        0.101333       
0.356667        -0.154      0.541333        0.101333       
-0.743333       -0.554      -0.758667       -0.0986667     
-0.143333       -0.254      0.341333        0.101333       
0.456667        0.246       2.24133     1.30133    
-0.0433333      -0.354      1.34133     0.701333       
1.25667     -0.054      2.14133     0.901333       
0.456667        -0.154      1.84133     0.601333       
0.656667        -0.054      2.04133     1.00133    
1.75667     -0.054      2.84133     0.901333       
-0.943333       -0.554      0.741333        0.501333       
1.45667     -0.154      2.54133     0.601333       
0.856667        -0.554      2.04133     0.601333       
1.35667     0.546       2.34133     1.30133    
0.656667        0.146       1.34133     0.801333       
0.556667        -0.354      1.54133     0.701333       
0.956667        -0.054      1.74133     0.901333       
-0.143333       -0.554      1.24133     0.801333       
-0.0433333      -0.254      1.34133     1.20133    
0.556667        0.146       1.54133     1.10133    
0.656667        -0.054      1.74133     0.601333       
1.85667     0.746       2.94133     1.00133    
1.85667     -0.454      3.14133     1.10133    
0.156667        -0.854      1.24133     0.301333       
1.05667     0.146       1.94133     1.10133    
-0.243333       -0.254      1.14133     0.801333       
1.85667     -0.254      2.94133     0.801333       
0.456667        -0.354      1.14133     0.601333       
0.856667        0.246       1.94133     0.901333       
1.35667     0.146       2.24133     0.601333       
0.356667        -0.254      1.04133     0.601333       
0.256667        -0.054      1.14133     0.601333       
0.556667        -0.254      1.84133     0.901333       
1.35667     -0.054      2.04133     0.401333       
1.55667     -0.254      2.34133     0.701333       
2.05667     0.746       2.64133     0.801333       
0.556667        -0.254      1.84133     1.00133    
0.456667        -0.254      1.34133     0.301333       
0.256667        -0.454      1.84133     0.201333       
1.85667     -0.054      2.34133     1.10133    
0.456667        0.346       1.84133     1.20133    
0.556667        0.046       1.74133     0.601333       
0.156667        -0.054      1.04133     0.601333       
1.05667     0.046       1.64133     0.901333       
0.856667        0.046       1.84133     1.20133    
1.05667     0.046       1.34133     1.10133    
-0.0433333      -0.354      1.34133     0.701333       
0.956667        0.146       2.14133     1.10133    
0.856667        0.246       1.94133     1.30133    
0.856667        -0.054      1.44133     1.10133    
0.456667        -0.554      1.24133     0.701333       
0.656667        -0.054      1.44133     0.801333       
0.356667        0.346       1.64133     1.10133    
0.0566667       -0.054      1.34133     0.601333       

2.计算B的协方差矩阵C:

1
2
3
4
0.685694        -0.0392685      1.27368     0.516904       
-0.0392685      0.188004        -0.321713       -0.117981      
1.27368     -0.321713       3.11318     1.29639    
0.516904        -0.117981       1.29639     0.582414       
3.计算协方差矩阵C的特征值和特征向量。
C=V*S*V-1
S=

4.2248414     0       0       0 
0          0.24224437  0          0 
0          0       0.078524387   0 
0          0       0        0.023681839

V=

0.36158919   0.65654382   -0.58100304   0.3172364 
-0.082268924    0.72970845    0.596429220       -0.3240827 
0.85657212  -0.17576972 0.  072535217    -0.47971643 
0.35884438    -0.074704743    0.54904125    0.75113489

4.选取大的特征值对应的特征向量,得到新的数据集。
特征值是由大到小排列的,前两个特征值的和已经超过了所有特征值之和的97%。我们取前两个特征值对应的特征向量,得到一个4×2的矩阵M。令A'150×2=A150×4M4×2,这样我们就把150×4的数据A集映射成了150×2的数据集A',特征由4个减到了2个。
A'=
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
2.8271335      5.6413345     
2.7959501      5.1451715     
2.6215213      5.1773814     
2.7649037      5.0036022     
2.7827477      5.648651      
3.2314432      6.0625092     
2.6904502      5.2326213     
2.8848587      5.4851323     
2.6233824      4.7439288     
2.837496       5.2080359     
3.0048137      5.9666624     
2.898198       5.3362466     
2.7239067      5.0869876     
2.2861405      4.8114466     
2.867797       6.5009233     
3.127471       6.6594805     
2.8888143      6.132817      
2.8630179      5.633864      
3.3122624      6.1939719     
2.9239945      5.8351996     
3.2008088      5.7125959     
2.9681058      5.7547583     
2.2954831      5.4563413     
3.2082122      5.4202505     
3.1551697      5.2835156     
3.0034234      5.1756719     
3.0422848      5.4526144     
2.9489496      5.6894119     
2.8715193      5.634018      
2.8784929      5.1246505     
2.9228787      5.117334      
3.1012632      5.7328089     
2.8637038      6.1347075     
2.9141809      6.4147479     
2.837496       5.2080359     
2.6443408      5.3919215     
2.8861119      5.921529      
2.837496       5.2080359     
2.5294983      4.8344766     
2.9210176      5.5507867     
2.7412018      5.5857866     
2.6591299      4.3818646     
2.5130445      4.9804183     
3.1058267      5.5106443     
3.3025077      5.7574212     
2.7956756      5.0720467     
2.9737672      5.8250931     
2.6710196      5.0941501     
2.9686547      5.901008      
2.8074283      5.4297384     
6.7961349      6.0001695     
6.4437514      5.6339266     
6.9754017      5.8189198     
5.6923082      4.4891254     
6.5984751      5.3901207     
6.1517776      4.8974035     
6.6065644      5.5986187     
4.759874       4.3136202     
6.5546382      5.5436868     
5.5011511      4.5941521     
5.0002549      4.0522372     
6.0224389      5.2124439     
5.7736764      4.7668379     
6.4953853      5.1903675     
5.3364769      5.0629127     
6.4389134      5.7829664     
6.1709338      4.9627499     
5.7458813      4.9828064     
6.4537025      4.7729094     
5.5545872      4.7332394     
6.6275817      5.2305124     
5.8681272      5.2479059     
6.8078095      4.9871684     
6.4318433      5.1323376     
6.2253487      5.465109      
6.4109813      5.6443412     
6.8423818      5.5594003     
7.0687368      5.5821223     
6.3237964      5.1523966     
5.204006       4.949643      
5.440998       4.6121911     
5.3194564      4.6372386     
5.6463357      5.0030194     
6.8900779      4.8935226     
6.098616       4.8314411     
6.3185463      5.5097803     
6.7317694      5.722765      
6.3242084      4.9440526     
5.7565361      5.0479987     
5.6758544      4.6350671     
5.9743719      4.6452005     
6.4015012      5.2809153     
5.7402198      4.9124716     
4.8042598      4.3063037     
5.866874       4.8115092     
5.8424678      5.1035466     
5.8865791      5.0231053     
6.1530309      5.3338002     
4.6028777      4.5631602     
5.8091488      4.9677114     
8.0430681      5.3028838     
6.9254133      4.7398024     
8.1278252      5.6566652     
7.4821558      5.1336016     
7.8610989      5.2728454     
8.9082203      5.8618983     
6.0307247      4.123374      
8.4433454      5.6671066     
7.8310134      5.0691818     
8.4294749      6.0951088     
7.1732758      5.5567668     
7.3136813      5.0985747     
7.6767196      5.5300099     
6.8559354      4.5383128     
7.0966086      4.7754209     
7.4160846      5.4335471     
7.4605895      5.3554582     
9.0001057      6.486272      
9.3060273      5.5679974     
6.8096707      4.5537158     
7.939508       5.6915111     
6.7094386      4.7091479     
9.0106057      5.7715045     
6.8990091      5.1106987     
7.7871944      5.6481141     
8.1255342      5.8730957     
6.7689661      5.1355922     
6.8020106      5.1983025     
7.6341949      5.1038737     
7.8989047      5.7772489     
8.3523013      5.6874736     
8.743683       6.6852526     
7.6700793      5.0964032     
6.9544433      5.170927      
7.2909809      4.8132622     
8.587862       6.0004966     
7.6563279      5.453633      
7.4162037      5.3627746     
6.6801944      5.1502251     
7.6189944      5.6862121     
7.8256443      5.497338      
7.4337916      5.7240021     
6.9254133      4.7398024     
8.0746635      5.5907028     
7.9307322      5.6182322     
7.4553579      5.5021455     
7.0370045      4.9397096     
7.2753867      5.3932482     
7.4129702      5.430603      
6.9010071      5.0318398

每个样本正好是二维的,画在平面坐标系中如图:

鹫尾花数据集共分为3类花(前50个样本为一类,中间50个样本为一类,后50个样本为一类),从上图可以看到把数据集映射到2维后分类会更容易进行,直观上看已经是线性可分的了,下面我们用自组织映射网络对其进行聚类。

当然我们已知了有3类,所以在设计SOFM网络时,我把竞争层节点数设为3,此时的聚类结果是前50个样本聚为一类,后100个样本聚为一类。当把竞争层节点数改为4时,仅第2类中的3个样本被误分到了第3类中,整体精度达98%!

#include<iostream>
#include<fstream>
#include<set>
#include<cstdlib>
#include<vector>
#include<cmath>
#include<ctime>
  
using namespace std;
  
const int sample_num=150;      //鹫尾花样本个数
const int class_num=4;      //指定聚类的数目
int iteration_ceil;      //迭代的上限
vector<pair<double,double> > flowers(sample_num);      //样本数据
vector<vector<double> > weight(class_num);   //权向量
const double prime_eta=0.7;     //初始学习率
  
/*向量模长归一化*/
void normalize(vector<double> &vec){
    double sum=0.0;
    for(int i=0;i<vec.size();++i)
        sum+=pow(vec[i],2);
    sum=sqrt(sum);
    for(int i=0;i<vec.size();++i)
        vec[i]/=sum;
}
 
/*从文件读入鹫尾花样本数据*/
void init_sample(string filename){
    ifstream ifs(filename.c_str());
    if(!ifs){
        cerr<<"open data file failed."<<endl;
        exit(1);
    }
    for(int i=0;i<sample_num;++i){
        vector<double> X(2);
        ifs>>X[0]>>X[1];
        normalize(X);       //输入向量模长归一化
        flowers[i]=make_pair(X[0],X[1]);
    }
    ifs.close();
}
 
/*初始化权值*/
void init_weight(){
    srand(time(0));
    for(int i=0;i<weight.size();++i){
        vector<double> ele(2);
        ele[0]=rand()/(double)RAND_MAX;
        ele[1]=rand()/(double)RAND_MAX;
        normalize(ele);     //权值向量模长归一化
        weight[i]=ele;
    }
}
 
/*根据输入,选择获胜者*/
int pick_winner(double x1,double x2){
    int rect=-1;
    double max=0.0;
    for(int i=0;i<weight.size();++i){
        double product=x1*weight[i][0]+x2*weight[i][1];
        if(product>max){
            max=product;
            rect=i;
        }
    }
    return rect;
}
  
int main(int argc,char *argv[]){
    cout<<"input iteration count"<<endl;
    int count;      //每个样本迭代的次数
    cin>>count;
    cout<<"input data file name"<<endl;
    string filename;
    cin>>filename;
    iteration_ceil=count*sample_num;
    init_sample(filename);
    init_weight();
      
    double eta=prime_eta;
    double gradient1=-1*9*prime_eta/iteration_ceil;
    double gradient2=-1*prime_eta/(9*iteration_ceil);
    double b1=prime_eta;
    double b2=prime_eta/9;
    for(int iteration=0;iteration<iteration_ceil;++iteration){
        int flower_index=iteration%sample_num;
        double x1=flowers[flower_index].first;
        double x2=flowers[flower_index].second;
        int winner=pick_winner(x1,x2);
        /*更改获胜者的权值*/
        weight[winner][0]+=eta*(x1-weight[winner][0]);
        weight[winner][1]+=eta*(x2-weight[winner][1]);
        /*权向量归一化*/
        for(int i=0;i<weight.size();++i){
            vector<double> W(2);
            W[0]=weight[i][0];
            W[1]=weight[i][1];
            normalize(W);
            weight[i][0]=W[0];
            weight[i][1]=W[1];
        }
        /*更新学习率*/
        if(iteration<0.1*iteration_ceil){   //在前10%的迭代中,学习率线性下降到原来的10%
            eta=gradient1*iteration+b1;
        }
        else{       //后90%的迭代中线性降低到0
            eta=gradient2*iteration+b2;
        }
    }
  
    for(int i=0;i<sample_num;++i){
        double x1=flowers[i].first;
        double x2=flowers[i].second;
        int winner=pick_winner(x1,x2);
        cout<<i+1<<"\t"<<winner+1<<endl;
    }
    return 0;
}

输出聚类结果:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
1       2
2       2
3       2
4       2
5       2
6       2
7       2
8       2
9       2
10      2
11      2
12      2
13      2
14      2
15      2
16      2
17      2
18      2
19      2
20      2
21      2
22      2
23      2
24      2
25      2
26      2
27      2
28      2
29      2
30      2
31      2
32      2
33      2
34      2
35      2
36      2
37      2
38      2
39      2
40      2
41      2
42      2
43      2
44      2
45      2
46      2
47      2
48      2
49      2
50      2
51      4
52      4
53      4
54      4
55      4
56      4
57      4
58      4
59      4
60      4
61      4
62      4
63      4
64      4
65      4
66      4
67      4
68      4
69      1
70      4
71      4
72      4
73      1
74      4
75      4
76      4
77      4
78      4
79      4
80      4
81      4
82      4
83      4
84      1
85      4
86      4
87      4
88      4
89      4
90      4
91      4
92      4
93      4
94      4
95      4
96      4
97      4
98      4
99      4
100     4
101     1
102     1
103     1
104     1
105     1
106     1
107     1
108     1
109     1
110     1
111     1
112     1
113     1
114     1
115     1
116     1
117     1
118     1
119     1
120     1
121     1
122     1
123     1
124     1
125     1
126     1
127     1
128     1
129     1
130     1
131     1
132     1
133     1
134     1
135     1
136     1
137     1
138     1
139     1
140     1
141     1
142     1
143     1
144     1
145     1
146     1
147     1
148     1
149     1
150     1

 

原文来自:博客园(华夏35度)http://www.cnblogs.com/zhangchaoyang 作者:Orisun
 

2. PCA

数学推倒过程:http://blog.codinglabs.org/articles/pca-tutorial.html

具体的细节,Andrew Ng的网页教程:http://deeplearning.stanford.edu/wiki/index.php/%E4%B8%BB%E6%88%90%E5%88%86%E5%88%86%E6%9E%90 ,写得很详细。

2.1 优势:

通过PCA进行降维处理,我们就可以同时获得SVM和决策树的优点:

  • 一方面,得到了和决策树一样简单的分类器,同时分类间隔和SVM— 样好。
  • 另外,由于只需要考虑一维信息,因此数据就可以通过比SVM 简单得多的很容易采用的规则进行区分

2.2 选择主成分个数

文章写到这里还没有完,应用PCA的时候,对于一个1000维的数据,我们怎么知道要降到几维的数据才是合理的?即n要取多少,才能保留最多信息同时去除最多的噪声?一般,我们是通过方差百分比来确定n的,这一点在Ufldl教程中说得很清楚,并且有一条简单的公式,下面是该公式的截图:

所以代码修改:

import numpy as np
from numpy import linalg as la
import matplotlib.pyplot as plt
from sklearn import preprocessing
def calculateN(eigVal, percentage):
# 根据百分比确认选择特征向量的个数n的值
eigValSorted = np.sort(eigVal) #升序
eigValSorted = eigValSorted[-1::-1] #逆序(从大到小)
eigValSum = sum(eigValSorted)
num = 0
tmpSum = 0
for i in eigValSorted:
tmpSum += i
num +=1
if tmpSum >= eigValSum * percentage:
return num def pca(data,percentage = 0.99):
# data = np.array(data)
# 1.计算各属性的平均值
meanValues = np.mean(data, axis=0)
# 2.减去平均值
meanRemoved = data - meanValues
# 3. 计算协方差矩阵的特征值和特征向量
covData = np.cov(meanRemoved, rowvar=False) # 按列存放
eigVal, eigVects = la.eig(covData) # 4.计算要特征向量的个数n
n = calculateN(eigVal, percentage=percentage)
print(n) # 4. 将n个特征值的索引从大到小排序
eigValInd = np.argsort(eigVal) # 从小到大
eigValInd = eigValInd[-1:-(n+1):-1] # 逆序:从大到小 # 5. 保留n个最大的特征向量
redEigVects = eigVects[:, eigValInd]
# 6. 将数据转换到上述topNfeat个特征向量构建的新空间中
lowDData = np.dot(meanRemoved, redEigVects)
# 7. 重构
reconData = np.dot(lowDData, redEigVects.T) + meanValues
return lowDData, reconData # 画出原始数据/降维数据
def plotData(data, reconData):
fig = plt.figure()
plt.scatter(data[:, 0].flatten(), data[:, 1], marker='^', s=90)
plt.scatter(reconData[:, 0].flatten(), reconData[:, 1].flatten(), marker='o', s=50, c='red')
plt.show() def replaceWithMean():
data = np.loadtxt('D:\\学习\\机器学习实战(中+英+源码)_FILES\\machinelearninginaction\\Ch13\\secom.data', delimiter=' ')
impute = preprocessing.Imputer()
data = impute.fit_transform(data)
return data data = replaceWithMean()
lowDData, reconData = pca(data)
plotData(data, reconData)

  

(ps:以上来源网络,收集于此,若有问题,请留言!)

主成分分析PCA的更多相关文章

  1. 深度学习入门教程UFLDL学习实验笔记三:主成分分析PCA与白化whitening

    主成分分析与白化是在做深度学习训练时最常见的两种预处理的方法,主成分分析是一种我们用的很多的降维的一种手段,通过PCA降维,我们能够有效的降低数据的维度,加快运算速度.而白化就是为了使得每个特征能有同 ...

  2. 线性判别分析(LDA), 主成分分析(PCA)及其推导【转】

    前言: 如果学习分类算法,最好从线性的入手,线性分类器最简单的就是LDA,它可以看做是简化版的SVM,如果想理解SVM这种分类器,那理解LDA就是很有必要的了. 谈到LDA,就不得不谈谈PCA,PCA ...

  3. 降维(一)----说说主成分分析(PCA)的源头

    降维(一)----说说主成分分析(PCA)的源头 降维系列: 降维(一)----说说主成分分析(PCA)的源头 降维(二)----Laplacian Eigenmaps --------------- ...

  4. 主成分分析PCA(转载)

    主成分分析PCA 降维的必要性 1.多重共线性--预测变量之间相互关联.多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯. 2.高维空间本身具有稀疏性.一维正态分布有68%的值落于正负标准差之 ...

  5. 机器学习 —— 基础整理(四)特征提取之线性方法:主成分分析PCA、独立成分分析ICA、线性判别分析LDA

    本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensiona ...

  6. 一步步教你轻松学主成分分析PCA降维算法

    一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简 ...

  7. 机器学习课程-第8周-降维(Dimensionality Reduction)—主成分分析(PCA)

    1. 动机一:数据压缩 第二种类型的 无监督学习问题,称为 降维.有几个不同的的原因使你可能想要做降维.一是数据压缩,数据压缩不仅允许我们压缩数据,因而使用较少的计算机内存或磁盘空间,但它也让我们加快 ...

  8. 主成分分析(PCA)原理及推导

    原文:http://blog.csdn.net/zhongkejingwang/article/details/42264479 什么是PCA? 在数据挖掘或者图像处理等领域经常会用到主成分分析,这样 ...

  9. K-L变换和 主成分分析PCA

    一.K-L变换 说PCA的话,必须先介绍一下K-L变换了. K-L变换是Karhunen-Loeve变换的简称,是一种特殊的正交变换.它是建立在统计特性基础上的一种变换,有的文献也称其为霍特林(Hot ...

  10. 05-03 主成分分析(PCA)

    目录 主成分分析(PCA) 一.维数灾难和降维 二.主成分分析学习目标 三.主成分分析详解 3.1 主成分分析两个条件 3.2 基于最近重构性推导PCA 3.2.1 主成分分析目标函数 3.2.2 主 ...

随机推荐

  1. poj 1325 Machine Schedule 题解

    Machine Schedule Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14479   Accepted: 6172 ...

  2. RV32C指令集

    Risc-V支持16位压缩格式,压缩格式立即数位数更少,能使用的寄存器也比较少,有些指令只能用常用8个整数寄存器(x8-x15)或者(f8-f15). 每个RVC指令都有对应的32位指令,下表列出所有 ...

  3. eclipse.ini 内存设置

    Ubuntu 系统下,Eclipse 配置文件: vi ~/eclipse/eclipse.ini -vmargs -Xms128M -Xmx512M -XX:PermSize=64M -XX:Max ...

  4. 小游戏:HelloColor

    这是我写的第一个游戏.模仿一款手机游戏"颜色运行"写的.大概花了一天的时间完成,挺简单的. 游戏名:HelloColor,翻译成中文是:你好色 按空格键开始和暂停开始游戏后,界面右 ...

  5. 第三章 消息摘要算法--MD5

    注意:本节内容主要参考自<Java加密与解密的艺术(第2版)>第6章“验证数据完整性--消息摘要算法” 3.1.消息摘要算法:防止消息在传递过程中被篡改. 原理:任何消息经过消息摘要算法后 ...

  6. go语言之进阶篇Read的使用

    1.read的使用(备注:读文件) 示例: package main import ( "fmt" "io" "os" ) func Wri ...

  7. 跨平台APP----对Cordova,APPCan,DCloud,APICloud四大平台的分析

    前言: 移动开发是未来一个很重要的IT领域,而跨平台开发将是这一领域最重要的事情.         ----谷震平 一 兵器谱 在国外,最大的是Cordova(PhoneGap,2011年广泛流行), ...

  8. Backbone.js 使用 Collection

    在前面我们的 Backbone.js 用上了 Model, 但绝大数的情况下我们处理的都是一批的 Model 数据列表,所以需要有一个 Collection 来容纳 Model, 就像 Java 里最 ...

  9. 性能测试vs负载测试vs压力测试

    下面我们主要介绍性能测试.负载测试和压力测试. 效率作为ISO 9126内部和外部质量的重要质量属性之一,其含义是在规定条件下,相对于所用的资源的数量,软件产品可提供适当性能的能力.资源可能包括其他软 ...

  10. 解析oui.txt文件,通过MAC前缀获取Organization

    1.前言 OUI是指Organizationally unique identifier  (组织唯一标识符),签发给各类组织的唯一标识符.MAC地址共有6个字节48位组成,前3个字节体现了OUI,其 ...