【python-opencv】18-图像梯度+图像边界
效果图:
*一阶导数与Soble算子
*二阶导数与拉普拉斯算子
定义:把图片想象成连续函数,因为边缘部分的像素值是与旁边像素明显有区别的,所以对图片局部求极值,就可以得到整幅图片的边缘信息了。
不过图片是二维的离散函数,图像梯度其实就是这个二维离散函数的求导。
Sobel算子是普通一阶差分,是基于寻找梯度强度。
拉普拉斯算子(二阶差分)是基于过零点检测。通过计算梯度,设置阀值,得到边缘图像。
Sobel算子效果图:
Scharr算子是Sobel的升级增强
import cv2 as cv
import numpy as np #sobel算子
def soble_demo(image):
cv.imshow('input_image', src)
grad_x = cv.Sobel(image,cv.CV_32F,dx=1,dy=0) #对x求一阶导
grad_y = cv.Sobel(image,cv.CV_32F,dx=0,dy=1) #对y求一阶导
# grad_x = cv.Scharr(image, cv.CV_32F, dx=1, dy=0) # 对x求一阶导,Scharr算子是Sobel的升级增强
# grad_y = cv.Scharr(image,cv.CV_32F,dx=0,dy=1) #对y求一阶导,Scharr算子是Sobel的升级增强
gradx = cv.convertScaleAbs(grad_x)
grady = cv.convertScaleAbs(grad_y)
cv.imshow("gardient_x",gradx) #x方向上的梯度
cv.imshow("gardient_y",grady) #y方向上的梯度
gradxy = cv.addWeighted(gradx,0.5,grady,0.5,0) #添加xy方向上权重各为0.5,z方向权重为0,图片融合
cv.imshow('gradient',gradxy) src = cv.imread('lena.jpg')
# cv.namedWindow('input_image',cv.WINDOW_AUTOSIZE)
cv.imshow('input_image1', src) soble_demo(src)
laplace_demo(src) cv.waitKey(0)
cv.destroyAllWindows()
注意:
1.Sobel算子用来计算图像灰度函数的近似梯度。Sobel算子根据像素点上下、左右邻点灰度加权差,在边缘处达到极值这一现象检测边缘。对噪声具有平滑作用,提供较为精确的边缘方向信息,边缘定位精度不够高。当对精度要求不是很高时,是一种较为常用的边缘检测方法。
2.Sobel具有平滑和微分的功效。即:Sobel算子先将图像横向或纵向平滑,然后再纵向或横向差分,得到的结果是平滑后的差分结果。
OpenCV的Sobel函数原型为:Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]]) -> dst
src参数表示输入需要处理的图像。(必需)
ddepth参数表示输出图像深度,针对不同的输入图像,输出目标图像有不同的深度。(必需)
具体组合如下:
src.depth() = CV_8U, 取ddepth =-1/CV_16S/CV_32F/CV_64F (一般源图像都为CV_8U,为了避免溢出,一般ddepth参数选择CV_32F)
src.depth() = CV_16U/CV_16S, 取ddepth =-1/CV_32F/CV_64F
src.depth() = CV_32F, 取ddepth =-1/CV_32F/CV_64F
src.depth() = CV_64F, 取ddepth = -1/CV_64F
注:ddepth =-1时,代表输出图像与输入图像相同的深度。
dx参数表示x方向上的差分阶数,1或0 。(必需)
dy参数表示y 方向上的差分阶数,1或0 。(必需)
dst参数表示输出与src相同大小和相同通道数的图像。
ksize参数表示Sobel算子的大小,必须为1、3、5、7。
scale参数表示缩放导数的比例常数,默认情况下没有伸缩系数。
delta参数表示一个可选的增量,将会加到最终的dst中,同样,默认情况下没有额外的值加到dst中。
borderType表示判断图像边界的模式。这个参数默认值为cv2.BORDER_DEFAULT。
参考:
https://blog.csdn.net/streamchuanxi/article/details/51542141
https://blog.csdn.net/sunny2038/article/details/9170013
Sobel算子原理:https://www.cnblogs.com/lancidie/archive/2011/07/17/2108885.html
注意:
Scharr算子也是计算x或y方向上的图像差分。OpenCV的Scharr函数原型为:Scharr(src, ddepth, dx, dy[, dst[, scale[, delta[, borderType]]]]) -> dst
参数和Sobel算子的几乎差不多,意思也一样,只是没有ksize大小。
2.OpenCV的convertScaleAbs函数使用线性变换转换输入数组元素成8位无符号整型。
函数原型:convertScaleAbs(src[, dst[, alpha[, beta]]]) -> dst
3.OpenCV的addWeighted函数是计算两个数组的加权和。
函数原型:addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype]]) -> dst
src1参数表示需要加权的第一个输入数组。
alpha参数表示第一个数组的权重。
src2参数表示第二个输入数组,它和第一个数组拥有相同的尺寸和通道数。
beta参数表示第二个数组的权重。
gamma参数表示一个加到权重总和上的标量值。
dst参数表示输出的数组,它和输入的两个数组拥有相同的尺寸和通道数。
dtype参数表示输出数组的可选深度。当两个输入数组具有相同的深度时,这个参数设置为-1(默认值),即等同于src1.depth()。
#laplace算子
def laplace_demo(image):
dst = cv.Laplacian(image,cv.CV_32F)
lpls = cv.convertScaleAbs(dst) #自定义 cv.Laplacian(),内核kernel
kernel1 = np.array([[0,1,0],[1,-4,1],[0,1,0]]) #kernel1 内核相当于cv.Laplacian(src, ddepth, dst=None, ksize=1)
kernel2 = np.array([[1,1,1],[1,-8,1],[1,1,1]]) #kernel2 内核相当于
dst = cv.filter2D(image,cv.CV_32F,kernel=kernel2)
lpls = cv.convertScaleAbs(dst) cv.imshow("laplace_demo",lpls)
运行结果:
注意:
1.拉普拉斯算子(Laplace Operator)是n维欧几里德空间中的一个二阶微分算子,定义为梯度(▽f)的散度(▽·f)。
2.OpenCV的Laplacian函数原型为:Laplacian(src, ddepth[, dst[, ksize[, scale[, delta[, borderType]]]]]) -> dst
src参数表示输入需要处理的图像。(必需)
ddepth参数表示输出图像深度,针对不同的输入图像,输出目标图像有不同的深度。(必需)
具体组合如下:
src.depth() = CV_8U, 取ddepth =-1/CV_16S/CV_32F/CV_64F (一般源图像都为CV_8U,为了避免溢出,一般ddepth参数选择CV_32F)
src.depth() = CV_16U/CV_16S, 取ddepth =-1/CV_32F/CV_64F
src.depth() = CV_32F, 取ddepth =-1/CV_32F/CV_64F
src.depth() = CV_64F, 取ddepth = -1/CV_64F
注:ddepth =-1时,代表输出图像与输入图像相同的深度。
dst参数表示输出与src相同大小和相同通道数的图像。
ksize参数表示用于计算二阶导数滤波器的孔径大小,大小必须是正数和奇数。
scale参数表示计算拉普拉斯算子值的比例因子,默认情况下没有伸缩系数。
delta参数表示一个可选的增量,将会加到最终的dst中,同样,默认情况下没有额外的值加到dst中。
borderType表示判断图像边界的模式。这个参数默认值为cv2.BORDER_DEFAULT。
补:
这里ksize参数默认值为1,此时Laplacian()函数采用以下3x3的孔径:
参考:
https://www.jianshu.com/p/c946cbdb6081
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_gradients/py_gradients.html#gradients
【python-opencv】18-图像梯度+图像边界的更多相关文章
- python opencv:摄像头捕获图像
- Python下opencv使用笔记(图像频域滤波与傅里叶变换)
Python下opencv使用笔记(图像频域滤波与傅里叶变换) 转载一只程序喵 最后发布于2018-04-06 19:07:26 阅读数 1654 收藏 展开 本文转载自 https://blog ...
- Python+OpenCV图像处理(十二)—— 图像梯度
简介:图像梯度可以把图像看成二维离散函数,图像梯度其实就是这个二维离散函数的求导. Sobel算子是普通一阶差分,是基于寻找梯度强度.拉普拉斯算子(二阶差分)是基于过零点检测.通过计算梯度,设置阀值, ...
- opencv python:图像梯度
一阶导数与Soble算子 二阶导数与拉普拉斯算子 图像边缘: Soble算子: 二阶导数: 拉普拉斯算子: import cv2 as cv import numpy as np # 图像梯度(由x, ...
- OpenCV学习笔记(10)——图像梯度
学习图像梯度,图像边界等 梯度简单来说就是求导. OpenCV提供了三种不同的梯度滤波器,或者说高通滤波器:Sobel,Scharr和Lapacian.Sobel,Scharr其实就是求一阶或二阶导. ...
- OpenCV常用基本处理函数(6)图像梯度
形态学转换 腐蚀 img = cv2.imread() kernel = np.ones((,),np.uint8) erosion = cv2.erode(img,kernel,iterations ...
- OpenCV Python教程(1、图像的载入、显示和保存)
原文地址:http://blog.csdn.net/sunny2038/article/details/9057415 转载请详细注明原作者及出处,谢谢! 本文是OpenCV 2 Computer ...
- opencv学习笔记(六)---图像梯度
图像梯度的算法有很多方法:sabel算子,scharr算子,laplacian算子,sanny边缘检测(下个随笔)... 这些算子的原理可参考:https://blog.csdn.net/poem_q ...
- opencv:图像梯度
常见的图像梯度算子: 一阶导数算子: #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; ...
随机推荐
- WAF Bypass FUZZ小脚本
分享两个小脚本,用来WAF Bypass简单FUZZ的 第一个:先生成一个字典,带入搭建的环境进行FUZZ,针对某些软WAF挺好用的,可FUZZ出不少姿势出来,记得先把CC攻击加入白名单才行哦... ...
- Jsoup(二)-- Jsoup查找DOM元素
一.Jsoup查找DOM元素的方法 getElementById(String id) 根据id 来查询DOM getElementsByTag(String tagName) 根据tag 名称来查询 ...
- Nginx 访问日志
配置访问日志: [root@localhost ~]$ cat /usr/local/nginx/conf/nginx.conf http { log_format main '$remote_add ...
- ASP.NET MVC入门到精通——数据库仓储
业务层调用数据层对象,我不想每次都new一个数据层对象,而是在数据层创建一个仓储,统一管理所有的对象调用. 1.在IDAL项目中,新建IDBSession.tt模板 Ctrl+S后自动生成IDBS ...
- [置顶] 深入探析Java线程锁机制
今天在iteye上提了一个关于++操作和线程安全的问题,一位朋友的回答一言点醒梦中人,至此我对Java线程锁有了更加深刻的认识.在这里也做个总结供大家参考. 先看几段代码吧! 代码一: public ...
- spring applicationContext.xml 配置文件 详解
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://ww ...
- Elasticsearch学习之深入聚合分析四---案例实战
1. 需求:比如有一个网站,记录下了每次请求的访问的耗时,需要统计tp50,tp90,tp99 tp50:50%的请求的耗时最长在多长时间tp90:90%的请求的耗时最长在多长时间tp99:99%的请 ...
- Elasticsearch学习之嵌套聚合,下钻分析,聚合分析
1. 计算每个tag下的商品数量 GET /ecommerce/product/_search { "aggs": { "group_by_tags": { & ...
- Mysql语句优化
总结总结自己犯过的错,网上说的与自己的Mysql语句优化的想法. 1.查询数据库的语句的字段,尽量做到用多少写多少. 2.建索引,确保查询速度. 3.orm框架自带的方法会损耗一部分性能,这个性能应该 ...
- linux常用命令之scp详解
使用scp的前提: 1.服务端启动了sshd服务 2.是本地和远程两端的系统都必须要有scp这个命令.即openssh-clients软件包 [安装方法] [root@ ~]# yum install ...