logistics回归
logistic回归的基本思想
logistic回归是一种分类方法,用于两分类问题。其基本思想为:
a. 寻找合适的假设函数,即分类函数,用以预测输入数据的判断结果;
b. 构造代价函数,即损失函数,用以表示预测的输出结果与训练数据的实际类别之间的偏差;
c. 最小化代价函数,从而获取最优的模型参数。
import numpy
from numpy import *
import matplotlib.pyplot as plt
import random
def loadDataSet(filename):
fr = open(filename)
dataMat = []
labelMat = []
for line in fr.readlines():
lineArr = line.strip().split()
dataMat.append( [1.0,float(lineArr[0]),float(lineArr[1])] )
labelMat.append(int(lineArr[2]))
return dataMat,labelMat #阶跃函数
def sigmoid(inX):
return 1.0/(1 + numpy.exp(-inX)) #基于梯度上升法的logistic回归分类器
def gradAscent(dataMatIn,classLabels):
dataMatrix = mat(dataMatIn)
labelMatrix = mat(classLabels).transpose()
m , n = shape(dataMatrix)
alpha = 0.001#步长
maxCycles = 500
weights = ones((n,1))
#对回归系数进行maxCycles次梯度上升
for i in range(maxCycles):
h = sigmoid(dataMatrix * weights)
error = labelMatrix - h
weights = weights + alpha * dataMatrix.transpose() * error
return weights #分析数据:画出决策边界
def plotBestFit(weights):
dataMat,labelMat = loadDataSet('test.txt')
dataArr = array(dataMat)
n = list(shape(dataArr))[0]
xcord1 = [] ; ycord1 = []
xcord2 = [] ; ycord2 = []
for i in range(n):
if int(labelMat[i]) == 1:
xcord1.append(dataArr[i,1])
ycord1.append(dataArr[i,2])
else:
xcord2.append(dataArr[i,1])
ycord2.append(dataArr[i,2])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1,ycord1,s=30,c='red',marker='s')
ax.scatter(xcord2,ycord2,s=30,c='green') #最佳拟合直线
x = arange(-3.0, 3.0, 0.1)
print('xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx',shape(x)) y = (-weights[0] - weights[1] * x) / weights[2]
print('-----------------------------------------',shape(y))
ax.plot(x,y)
plt.xlabel('X1')
plt.ylabel('X2')
plt.show() #随机梯度上升
def stocGradAscent0(dataMatrix,classLabels):
m , n = numpy.shape(dataMatrix)
alpha = 0.01#步长
weights = numpy.ones((n))
for i in range(m):
h = sigmoid(sum(dataMatrix[i] * weights))
error = classLabels[i] - h
weights = weights + alpha * error * dataMatrix[i]
return weights #改进的随机梯度上升
def stocGradAscent1(dataMatrix,classLabels,numIter=150):
m , n = shape(dataMatrix)
weights = ones(n)
dataIndex = list(range(m))
print (dataIndex)
for j in range(numIter):
for i in range(m):
alpha = 4/(1.0+j+i) + 0.1 #alpha每次迭代都要调整
randIndex = int(random.uniform(0,len(dataIndex)))
h = sigmoid (sum(dataMatrix[randIndex] * weights))
error = classLabels[randIndex] - h
weights = weights + alpha * error * dataMatrix[randIndex]
del dataIndex[randIndex]
print("randIndex",randIndex)
print("dataIndex",dataIndex)
if randIndex==0:
return weights if __name__ == '__main__':
dataArr,labelMat = loadDataSet('test.txt')
weights = stocGradAscent1(array(dataArr),labelMat)
# weights = gradAscent(dataArr,labelMat)
# print(shape(weights))
plotBestFit(weights)
应用:从疝气病预测病马的死亡率
import numpy
from numpy import *
import matplotlib.pyplot as plt
import random #阶跃函数
def sigmoid(inX):
return 1.0/(1 + numpy.exp(-inX)) #分类回归函数
def classifyVector(inX,weights):
prob = sigmoid(sum(inX * weights))
if prob > 0.5:
return 1.0
else:
return 0.0 #改进的随机梯度上升算法
def stocGradAscent1(dataMatrix, classLabels, numIter=150):
m, n = shape (dataMatrix)
weights = ones (n)
dataIndex = list (range (m))
for j in range (numIter):
for i in range (m):
alpha = 4 / (1.0 + j + i) + 0.1 # alpha每次迭代都要调整
randIndex = int (random.uniform (0, len (dataIndex)))
h = sigmoid (sum (dataMatrix[randIndex] * weights))
error = classLabels[randIndex] - h
weights = weights + alpha * error * dataMatrix[randIndex]
del dataIndex[randIndex]
if randIndex == 0:
return weights #测试,返回错误率
def colicTest():
frTrain = open('horseColicTraining.txt')
frTest = open('horseColicTest.txt')
trainingSet = []
trainingLabels = []
for line in frTrain.readlines():
curLine = line.strip().split('\t')
lineArr = []
for i in range(21):
lineArr.append(float(curLine[i]))
trainingSet.append(lineArr)
trainingLabels.append(float(curLine[21]))
trainWeights = stocGradAscent1(array(trainingSet),trainingLabels,500) errorCount = 0
numTestVec = 0
for line in frTest.readlines():
numTestVec += 1.0
curLine = line.strip().split('\t')
lineArr = []
for i in range(21):
lineArr.append(float(curLine[i]))
if int(classifyVector(array(lineArr),trainWeights)) != int(curLine[21]):
errorCount += 1
errorRate = (float(errorCount)/numTestVec)
print("错误率",errorRate)
return errorRate def multiTest():
numTests = 10
errorSum = 0.0
for i in range(numTests):
errorSum += colicTest()
print("%d 次迭代之后,平均错误率为%f"%(numTests,errorSum/float(numTests))) multiTest()
logistics回归的更多相关文章
- logistics回归简单应用(二)
警告:本文为小白入门学习笔记 网上下载的数据集链接:https://pan.baidu.com/s/1NwSXJOCzgihPFZfw3NfnfA 密码: jmwz 不知道这个数据集干什么用的,根据直 ...
- logistics回归简单应用——梯度下降,梯度上升,牛顿算法(一)
警告:本文为小白入门学习笔记 由于之前写过详细的过程,所以接下来就简单描述,主要写实现中遇到的问题. 数据集是关于80人两门成绩来区分能否入学: 数据集: http://openclassroom.s ...
- 机器学习算法的Python实现 (1):logistics回归 与 线性判别分析(LDA)
先收藏............ 本文为笔者在学习周志华老师的机器学习教材后,写的课后习题的的编程题.之前放在答案的博文中,现在重新进行整理,将需要实现代码的部分单独拿出来,慢慢积累.希望能写一个机器学 ...
- 机器学习实战-Logistics回归
Logistics回归:实战,有两个特征X0,X1.100个样本,进行Logistics回归 1.导入数据 def load_data_set(): """ 加载数据集 ...
- Popular generalized linear models|GLMM| Zero-truncated Models|Zero-Inflated Models|matched case–control studies|多重logistics回归|ordered logistics regression
============================================================== Popular generalized linear models 将不同 ...
- logistics回归理解
多元回归方程:假设有一个因变量y和一组自变量x1, x2, x3, ... , xn,其中y为连续变量,我们可以拟合一个线性方程: y =β0 +β1*x1 +β2*x2 +β3*x3 +...+βn ...
- Deeplearning——Logistics回归
资料来源:1.博客:http://binweber.top/2017/09/12/deep_learning_1/#more——转载,修改更新 2.文章:https://www.qcloud.com/ ...
- 机器学习-对数logistics回归
今天 学习了对数几率回归,学的不是很明白x1*theat1+x2*theat2...=y 对于最终的求解参数编程还是不太会,但是也大致搞明白了,对数几率回归是由于线性回归函数的结果并不是我们想要的,我 ...
- 多分类Logistics回归公式的梯度上升推导&极大似然证明sigmoid函数的由来
https://blog.csdn.net/zhy8623080/article/details/73188671 也即softmax公式
随机推荐
- Qt封装百度人脸识别+图像识别
AI技术的发展在最近几年如火如荼,工资待遇也是水涨船高,应用的前景也是非常广阔,去年火起来的人脸识别,今年全国遍地开花,之前封装了下face++的人脸识别等接口,今年看了下百度的AI,还免费了,效果也 ...
- jQuery队列(二)
继续阅读队列提供的方法. jQuery.extend({ queue: function( elem, type, data ) {}, // 将data按照某种类型存储到elem对应的队列中, ...
- cookie设置在特定时间点过期的方法
假设需求为:在当天晚上0:00过期. 方法: 得到当天晚上0:00这个时间点的一个时间. function getNextDate(){ var d = new Date(), ...
- eclipse安装maven时候如果conf文件夹中有setting文件则会以这个文件为主,如果自己设置了user的配置文件则会无效
eclipse安装maven时候如果conf文件夹中有setting文件则会以这个文件为主,如果自己设置了user的配置文件则会无效
- Android数据库开发——SQLite
上篇博客提到过SQLite,它是嵌入式数据库,由于其轻巧但功能强大,被广泛的用于嵌入式设备当中.后来在智能手机.平板流行之后,它作为文件型数据库,几乎成为了智能设备单机数据库的必选,可以随着安卓app ...
- [Windows]Window 7 修改系统时区
注意:编码存储为ANSI tzutil /s "China Standard Time"pause
- 危险的浮点数float
今天写程序又以为我见鬼了!最后查出来发现原来又是浮点数搞的鬼! 情况大致是这样的,我想要测试向量运算的速度,所以要对一个浮点数向量进行求和运算,代码如下: int vect_size=10000000 ...
- js原型浅谈理解
之前在学习原型(prototype)的时候,一直对原型的理解不是很清晰,只是知道每个对象都有一个原型,然后在js中万物又皆对象.在这里谈一下自己对于js原型的简单理解吧. 原型可以实现属性和方法的共享 ...
- zoj 2676 Network Wars 0-1分数规划+最小割
题目详解出自 论文 Amber-最小割模型在信息学竞赛中的应用 题目大意: 给出一个带权无向图 G = (V,E), 每条边 e属于E都有一个权值We,求一个割边集C,使得该割边集的平均边权最小,即最 ...
- jdk 与jre
1. 定义JRE(Java Runtime Enviroment)是Java的运行环境.面向Java程序的使用者,而不是开发者.如果你仅下载并安装了JRE,那么你的系统只能运行Java程序.JRE是运 ...