1. 论文思想

  • factorized convolutions and aggressive regularization.
  • 本文给出了一些网络设计的技巧。

2. 结果

  • 用5G的计算量和25M的参数。With an ensemble of 4 models and multi-crop evaluation, we report 3.5% top-5 error and 17.3% top-1 error.

3. Introduction

  • scaling up convolution network in efficient ways.

4. General Design Principles

  1. Avoid representational bottlenecks, especially early in the network.(简单说就是feature map的大小要慢慢的减小。)

  2. Higher dimensional representations are easier to process locally within a network. Increasing the activations per tile in a convolutional network allows for more disentangled features. The resulting networks will train faster.(在网络较深层应该利用更多的feature map,有利于容纳更多的分解特征。这样可以加速训练)

  3. Spatial aggregation can be done over lower dimensional embeddings without much or any loss in representational power.(也就是bottleneck layer的设计)

  4. Balance the width and depth of the network.(Increasing both the width and the depth of the network can contribute to higher quality networks.同时增加网络的深度和宽度)

5. Factorizing Convolution With Large Filter Size

  • 分解较大filter size的卷积。

5.1. Factorization into smaller convolutions

  • 一个5x5的卷积可以分解为两个3x3的卷积。

  • 实验表明,将一个卷积分解为两个卷积的时候,在第一个卷积之后利用ReLU会提升准确率。也就是说线性分解性能会差一些。

5.2 Spatial Factorization into Asymmetric Convolutions

  • 将3x3的卷积分解成31和13的卷积,可以减少33%计算量,如果将3x3分解为两个2x2,可以减少11%计算量,而且利用非对称卷积的效果还更好。
  • 实践表明,不要过早的使用这种分解操作,在feature map 大小为(12 ~ 20)之间,使用它,效果是比较好的。

6. Utility of Auxiliary Classifier

7. Efficient Grid Size Reduction

  • 左边引入了 representational bottleneck,右边的会增加大量的计算量,最佳的做法就是减少feature map大小的同时增大channel的数目。

  • 以上才是正确的方式。

论文笔记——Rethinking the Inception Architecture for Computer Vision的更多相关文章

  1. inception_v2版本《Rethinking the Inception Architecture for Computer Vision》(转载)

    转载链接:https://www.jianshu.com/p/4e5b3e652639 Szegedy在2015年发表了论文Rethinking the Inception Architecture ...

  2. Rethinking the inception architecture for computer vision的 paper 相关知识

    这一篇论文很不错,也很有价值;它重新思考了googLeNet的网络结构--Inception architecture,在此基础上提出了新的改进方法; 文章的一个主导目的就是:充分有效地利用compu ...

  3. 图像分类(三)GoogLenet Inception_v3:Rethinking the Inception Architecture for Computer Vision

    Inception V3网络(注意,不是module了,而是network,包含多种Inception modules)主要是在V2基础上进行的改进,特点如下: 将滤波器尺寸(Filter Size) ...

  4. Rethinking the Inception Architecture for Computer Vision

    https://arxiv.org/abs/1512.00567 Convolutional networks are at the core of most state-of-the-art com ...

  5. 【Network architecture】Rethinking the Inception Architecture for Computer Vision(inception-v3)论文解析

    目录 0. paper link 1. Overview 2. Four General Design Principles 3. Factorizing Convolutions with Larg ...

  6. 论文笔记:Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells

    Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells 2019-04- ...

  7. 论文笔记:DARTS: Differentiable Architecture Search

    DARTS: Differentiable Architecture Search 2019-03-19 10:04:26accepted by ICLR 2019 Paper:https://arx ...

  8. 论文笔记:Progressive Neural Architecture Search

    Progressive Neural Architecture Search 2019-03-18 20:28:13 Paper:http://openaccess.thecvf.com/conten ...

  9. 论文笔记系列-DARTS: Differentiable Architecture Search

    Summary 我的理解就是原本节点和节点之间操作是离散的,因为就是从若干个操作中选择某一个,而作者试图使用softmax和relaxation(松弛化)将操作连续化,所以模型结构搜索的任务就转变成了 ...

随机推荐

  1. 万恶之源 - Python函数进阶

    函数参数-动态参数 之前我们说过传参,如果我们在传参数的时候不很清楚有哪些的时候,或者说给一个函数传了很多参数,我们就要写很多,很麻烦怎么办呢,我们可以考虑使用动态参数 形参的第三种:动态参数 动态参 ...

  2. PAT 1018 Public Bike Management[难]

    链接:https://www.nowcoder.com/questionTerminal/4b20ed271e864f06ab77a984e71c090f来源:牛客网PAT 1018  Public ...

  3. js 俄罗斯方块源码,简单易懂

    1.自己引入jquery <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> ...

  4. 验证 Googlebot (检查是否为真的Google机器人)

    您可以验证访问您服务器的网页抓取工具是否确实是 Googlebot(还是其他 Google 用户代理).如果您担心自称是 Googlebot 的垃圾内容发布者或其他麻烦制造者访问您的网站,则会发现该方 ...

  5. Object之wait

    一.源码. 1.公共本地,且可继承但不可重写. 2.公共,且可继承但不可重写. 3.公共,且可继承但不可重写. 二.解释. 1.因为这些方法是Object类中的非静态的public方法,而任何其他类都 ...

  6. 彻底明白Flink系统学习5:window、Linux本地安装Flink

    http://www.aboutyun.com/thread-26393-1-1.html 问题导读 1.如何在window下安装Flink? 2.Flink本地安装启动命令与原先版本有什么区别? 3 ...

  7. Linux基础命令---ckconfig

    chkconfig 启动或者关闭系统服务,设置服务的运行级别,该指令并不会立刻启动或者停止服务,而是在开机的时候发生效果. chkconfig提供了一个简单的命令行工具,用于维护/etc/rc[0-6 ...

  8. C++ 电路布线/最短路径问题

    问题描述 用二维数组表示地图,若值为 1 则表示有障碍物,若值为 0 则表示可以通行. 输入: m*n 的二维数组,布线起点坐标,布线终点坐标. 输出: 最短布线距离以及对应的布线路径. 问题分析 从 ...

  9. HCNP学习笔记之IP地址、子网掩码、网关的关系

      0x00 概述 网络管理中的IP地址.子网掩码和网关是每个网管必须要掌握的基础知识,只有掌握它,才能够真正理解TCP/IP协议的设置. 以下我们就来深入浅出地讲解什么是子网掩码. IP地址的结构 ...

  10. Python入门之安装numpy和pandas

    最近要对一系列数据做同比比较,需要用到numpy和pandas来计算,不过使用python安装numpy和pandas因为linux环境没有外网遇到了很多问题就记下来了. 首要条件,python版本必 ...