教你轻松计算AOE网关键路径
认识AOE网
有向图中,用顶点表示活动,用有向边表示活动之间开始的先后顺序,则称这种有向图为AOV网络;AOV网络可以反应任务完成的先后顺序(拓扑排序)。
在AOV网的边上加上权值表示完成该活动所需的时间,则称这样的AOV网为AOE网,如下图:
图中,顶点表示事件(能被触发,两特征属性:最早发生时间Ve(j);最晚发生时间Vl(j)),边表示活动(能被开始,两特征属性:最早开始时间e(i);最晚开始时间l(i)),权表示活动持续时间,通常用AOE网来估算工程完成的时间
两条原则:
Ø 只有某顶点所代表的事件发生后,从该顶点出发的各活动才能开始
Ø 只有进入某顶点的各活动都结束,该顶点所代表的事件才能发生
计算关键路径
首先,在AOE网中,从始点到终点具有最大路径长度(该路径上的各个活动所持续的时间之和)的路径为关键路径。
计算关键路径,只需求出上面的四个特征属性,然后取e(i)=l(i)的边即为关键路径上的边(关键路径可能不止一条)。
先来看看四个特征属性的含义:
Ø Ve(j):是指从始点开始到顶点Vk的最大路径长度
计算技巧:
(1)从前向后,取大值:直接前驱结点的Ve(j)+到达边(指向顶点的边)的权值,有多个值的取较大者
如上图各顶点(事件)的Ve(j): (从V1开始)
Ø Vl(j):在不推迟整个工期的前提下,事件vk允许的最晚发生时间
计算技巧:
(1)从后向前,取小值:直接后继结点的Vl(j) –发出边(从顶点发出的边)的权值,有多个值的取较小者;
(2)终结点Vl(j)已知,等于它的Ve(j))
如上图各顶点(事件)的Vl(j): (从V7开始,):
Ø e(i): 若活动ai由弧<vk,vj>表示,则活动ai的最早开始时间应该等于事件vk的最早发生时间。因而,有:e[i]=ve[k];(即:边(活动)的最早开始时间等于,它的发出顶点的最早发生时间)
如上图各边(活动)的e(i):
Ø l(i): 若活动ai由弧<vk,vj>表示,则ai的最晚开始时间要保证事件vj的最迟发生时间不拖后。 因而有:l[i]=vl[j]-len<vk,vj>1(为边(活动)的到达顶点的最晚发生时间减去边的权值)
如上图各边(活动)的l(i):
至此已介绍完了四个特征属性的求法,也求出了上图中边的e(i)和l(i),取出e(i)=l(i)的边为a1、a2、a4、a8、a9,即为关键路径上的边,所以关键路径有两条:a1 a4 a9和 a2 a8 a9
总结
求关键路径,只需理解顶点(事件)和边(活动)各自的两个特征属性以及求法即可:
Ø 先根据首结点的Ve(j)=0由前向后计算各顶点的最早发生时间
Ø 再根据终结点的Vl(j)等于它的Ve(j)由后向前依次求解各顶点的最晚发生时间
Ø 根据边的e(i)等于它的发出顶点的Ve(j)计算各边的最早开始时间(最早开始,对应最早发生)
Ø 根据边的l(i)等于它的到达顶点的Vl(j)减去边的权值计算各边的最晚开始时间(最晚开始,对应最晚发生)
教你轻松计算AOE网关键路径的更多相关文章
- 教你轻松计算AOE网关键路径(转)
原文链接:http://blog.csdn.net/wang379275614/article/details/13990163 本次结合系统分析师-运筹方法-网络规划技术-关键路径章节,对原文链接描 ...
- AOE网与关键路径
声明:图片及内容基于https://www.bilibili.com/video/BV1BZ4y1T7Yx?from=articleDetail 原理 AOE网 关键路径 数据结构 核心代码 Topo ...
- 基于AOE网的关键路径的求解
[1]关键路径 在我的经验意识深处,“关键”二字一般都是指临界点. 凡事万物都遵循一个度的问题,那么存在度就会自然有临界点. 关键路径也正是研究这个临界点的问题. 在学习关键路径前,先了解一个AOV网 ...
- AOE网与关键路径简介
前面我们说过的拓扑排序主要是为解决一个工程能否顺序进行的问题,但有时我们还需要解决工程完成需要的最短时间问题.如果我们要对一个流程图获得最短时间,就必须要分析它们的拓扑关系,并且找到当中最关键的流程, ...
- _DataStructure_C_Impl:AOE网的关键路径
//_DataStructure_C_Impl:CriticalPath #include<stdio.h> #include<stdlib.h> #include<st ...
- 数据结构关于AOV与AOE网的区别
AOV网,顶点表示活动,弧表示活动间的优先关系的有向图. 即如果a->b,那么a是b的先决条件. AOE网,边表示活动,是一个带权的有向无环图, 其中顶点表示事件,弧表示活动,权表示活动持续时间 ...
- 一步步教你轻松学奇异值分解SVD降维算法
一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分 ...
- 一步步教你轻松学支持向量机SVM算法之案例篇2
一步步教你轻松学支持向量机SVM算法之案例篇2 (白宁超 2018年10月22日10:09:07) 摘要:支持向量机即SVM(Support Vector Machine) ,是一种监督学习算法,属于 ...
- 一步步教你轻松学主成分分析PCA降维算法
一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简 ...
随机推荐
- 数位dp(求1-n中数字1出现的个数)
题意:求1-n的n个数字中1出现的个数. 解法:数位dp,dp[pre][now][equa] 记录着第pre位为now,equa表示前边是否有降数字(即后边可不能够任意取,true为没降,true为 ...
- java解压缩zip和rar的工具类
package decompress; import java.io.File; import java.io.FileOutputStream; import org.apache.tools.an ...
- Hyperledger 项目
https://github.com/hyperledger/fabric.githttps://github.com/hyperledger/blockchain-explorer.githttps ...
- ThinkPHP错误信息处理
index.php入口文件中打开APP_DEBUG// 开启调试模式define('APP_DEBUG', TRUE); // 开启Trace信息 'SHOW_PAGE_TRACE' =>tru ...
- [转]Redis作者:深度剖析Redis持久化
From : http://www.iteye.com/news/24675 Redis是一种面向“key-value”类型数据的分布式NoSQL数据库系统,具有高性能.持久存储.适应高并发应用场景等 ...
- [转]nginx下的url rewrite
转:http://zhengdl126.iteye.com/blog/698206 if (!-e $request_filename){rewrite "^/index\.html&quo ...
- Java工程Properties配置文件注释中文,会自动转换为其他编码方式问题解决 中文乱码
properties文件中想注释中文,但是写出来后却是 :# /4djf/234/4354/r23df/324d 这种效果 是因为字符编码默认没有设置造成的,以前总是安装插件解决此问题, 但是却牺牲 ...
- HTTP和HTTPS的区别(转)
原文链接:HTTP和HTTPS的区别 HTTPS(Secure Hypertext Transfer Protocol)安全超文本传输协议 它是一个安全通信通道,它基于HTTP开发,用于在客户计算机和 ...
- Windows server 2008 r2 如何开启Win7的Aero效果 (转)
Aero 桌面体验为开放式外观提供了类似于玻璃的窗口. 它包括与众不同的直观样式,将轻型透明的窗口外观与强大的图形高级功能结合在一起.您可以享受具有视觉冲击力的效果和外观,并可从更快地访问程序中获益. ...
- Doxygen简单经验谈。。。
Doxygen,大名鼎鼎的文档生成工具,被Boost.OpenCasCade等诸多项目作为文档生成的不二人选.人说,才华横溢往往是高深莫测,这句话放在 Doxygen这里显然是不适用的.十八般武艺样样 ...