Multinoulli distribution
https://www.statlect.com/probability-distributions/multinoulli-distribution3
Multinoulli distribution
The Multinoulli distribution (sometimes also called categorical distribution) is a generalization of the Bernoulli distribution. If you perform an experiment that can have only two outcomes (either success or failure), then a random variable that takes value 1 in case of success and value 0 in case of failure is a Bernoulli random variable. If you perform an experiment that can have outcomes and you denote by a random variable that takes value 1 if you obtain the -th outcome and 0 otherwise, then the random vector defined asis a Multinoulli random vector. In other words, when the -th outcome is obtained, the -th entry of the Multinoulli random vector takes value , while all other entries take value .
In what follows the probabilities of the possible outcomes will be denoted by .
Definition
The distribution is characterized as follows.
Definition Let be a discrete random vector. Let the support of be the set of vectors having one entry equal to and all other entries equal to :Let , ..., be strictly positive numbers such thatWe say that has a Multinoulli distribution with probabilities , ..., if its joint probability mass function is
If you are puzzled by the above definition of the joint pmf, note that when and because the -th outcome has been obtained, then all other entries are equal to and
Expected value
The expected value of iswhere the vector is defined as follows:
Covariance matrix
The covariance matrix of iswhere is a matrix whose generic entry is
Joint moment generating function
The joint moment generating function of is defined for any :
Joint characteristic function
The joint characteristic function of is
Multinoulli distribution的更多相关文章
- bernoulli, multinoulli distributions 讲解
bernoulli, multinoulli distributions 讲解 常用概率分布-Bernoulli 分布 & Multinoulli 分布 转自:迭代自己-19常用概率分布 ...
- Reading | 《DEEP LEARNING》
目录 一.引言 1.什么是.为什么需要深度学习 2.简单的机器学习算法对数据表示的依赖 3.深度学习的历史趋势 最早的人工神经网络:旨在模拟生物学习的计算模型 神经网络第二次浪潮:联结主义connec ...
- 【Deep Learning读书笔记】深度学习中的概率论
本文首发自公众号:RAIS,期待你的关注. 前言 本系列文章为 <Deep Learning> 读书笔记,可以参看原书一起阅读,效果更佳. 概率论 机器学习中,往往需要大量处理不确定量,或 ...
- 论文:Show, Attend and Tell: Neural Image Caption Generation with Visual Attention-阅读总结
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention-阅读总结 笔记不能简单的抄写文中的内容,得有自 ...
- PRML 概率分布
本文地址:https://www.cnblogs.com/faranten/p/15917369.html 转载请注明作者与出处 1 二元变量 1.1 伯努利分布与二项分布 考虑一个最基本的试验: ...
- 齐夫定律, Zipf's law,Zipfian distribution
齐夫定律(英语:Zipf's law,IPA英语发音:/ˈzɪf/)是由哈佛大学的语言学家乔治·金斯利·齐夫(George Kingsley Zipf)于1949年发表的实验定律. 它可以表述为: 在 ...
- CloudSim4.0报错NoClassDefFoundError,Caused by: java.lang.ClassNotFoundException: org.apache.commons.math3.distribution.UniformRealDistribution
今天下载了CloudSim 4.0的代码,运行其中自带的示例程序,结果有一部分运行错误: 原因是找不到org.apache.commons.math3.distribution.UniformReal ...
- Wishart distribution
Introduction In statistics, the Wishart distribution is generalization to multiple dimensions of the ...
- distribution 中一直在运行 waitfor delay @strdelaytime 语句
Replication 自动创建来一个 Job:Replication monitoring refresher for distribution,这个Agent执行一个sp: dbo.sp_repl ...
随机推荐
- IOS 7 更改导航栏文字到白色
To hide status bar in any viewcontroller: -(BOOL) prefersStatusBarHidden { return YES; } To change t ...
- iOS - 集成Bundle资源文件包
1.Bundle 文件 Bundle 文件,简单理解,就是资源文件包.我们将许多图片.XIB.文本文件组织在一起,打包成一个 Bundle 文件.方便在其他项目中引用包内的资源. Bundle 文件是 ...
- 8.17 一个博客demo
2018-8-17 18:13:27 明天周末准备整理一下看看我的博客!!! 说一下思路 1.先搭建框架 1.1 大体分成两块div 左右两部分 <div class="left&qu ...
- eclipse快速向下复制行
Ctrl+Alt+↓ 复制当前行到下一行(复制增加)
- Java 构造函数(抽象类中的构造函数) 和 加载
博客分类: 面向对象设计的原则 与 概念 1. Java 的构造函数 与初始化块: a. 抽象类的构造函数 若果在父类中(也就是抽象类)中显示的写了有参数的构造函数,在子类是就必须写一个构造函数来 ...
- 使用find命令按条件查找多个文件并且拷贝至指定目录
命令格式如下 find / \( -name "*.war" -o -name "*.jar" \) | xargs -i cp {} ${wardir} 当需 ...
- Python3.6.3中,functools似乎不能用
用pip install安装时报编码错误: return s.decode(sys.__stdout__.encoding) UnicodeDecodeError: 'utf-8' codec can ...
- Mergeable Stack 直接list内置函数。(152 - The 18th Zhejiang University Programming Contest Sponsored by TuSimple)
题意:模拟栈,正常pop,push,多一个merge A B 形象地说就是就是将栈B堆到栈A上. 题解:直接用list 的pop_back,push_back,splice 模拟, 坑:用splice ...
- vue - 组件的创建
组件的创建 vue的核心基础就是组件的使用,玩好了组件才能将前面学的基础更好的运用起来.组件的使用更使我们的项目解耦合.更加符合vue的设计思想MVVM. 那接下来就跟我看一下如何在一个Vue实例中使 ...
- sublime安装install package
通过 https://sublime.wbond.net/Package%20Control.sublime-package 下载packageControl文件 下载完成后,打开sublime te ...