Multinoulli distribution
https://www.statlect.com/probability-distributions/multinoulli-distribution3
Multinoulli distribution
The Multinoulli distribution (sometimes also called categorical distribution) is a generalization of the Bernoulli distribution. If you perform an experiment that can have only two outcomes (either success or failure), then a random variable that takes value 1 in case of success and value 0 in case of failure is a Bernoulli random variable. If you perform an experiment that can have outcomes and you denote by
a random variable that takes value 1 if you obtain the
-th outcome and 0 otherwise, then the random vector
defined as
is a Multinoulli random vector. In other words, when the
-th outcome is obtained, the
-th entry of the Multinoulli random vector
takes value
, while all other entries take value
.
In what follows the probabilities of the possible outcomes will be denoted by
.
Definition
The distribution is characterized as follows.
Definition Let be a
discrete random vector. Let the support of
be the set of
vectors having one entry equal to
and all other entries equal to
:
Let
, ...,
be
strictly positive numbers such that
We say that
has a Multinoulli distribution with probabilities
, ...,
if its joint probability mass function is
If you are puzzled by the above definition of the joint pmf, note that when and
because the
-th outcome has been obtained, then all other entries are equal to
and
Expected value
The expected value of is
where the
vector
is defined as follows:
Covariance matrix
The covariance matrix of is
where
is a
matrix whose generic entry is
Joint moment generating function
The joint moment generating function of is defined for any
:
Joint characteristic function
The joint characteristic function of is
Multinoulli distribution的更多相关文章
- bernoulli, multinoulli distributions 讲解
bernoulli, multinoulli distributions 讲解 常用概率分布-Bernoulli 分布 & Multinoulli 分布 转自:迭代自己-19常用概率分布 ...
- Reading | 《DEEP LEARNING》
目录 一.引言 1.什么是.为什么需要深度学习 2.简单的机器学习算法对数据表示的依赖 3.深度学习的历史趋势 最早的人工神经网络:旨在模拟生物学习的计算模型 神经网络第二次浪潮:联结主义connec ...
- 【Deep Learning读书笔记】深度学习中的概率论
本文首发自公众号:RAIS,期待你的关注. 前言 本系列文章为 <Deep Learning> 读书笔记,可以参看原书一起阅读,效果更佳. 概率论 机器学习中,往往需要大量处理不确定量,或 ...
- 论文:Show, Attend and Tell: Neural Image Caption Generation with Visual Attention-阅读总结
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention-阅读总结 笔记不能简单的抄写文中的内容,得有自 ...
- PRML 概率分布
本文地址:https://www.cnblogs.com/faranten/p/15917369.html 转载请注明作者与出处 1 二元变量 1.1 伯努利分布与二项分布 考虑一个最基本的试验: ...
- 齐夫定律, Zipf's law,Zipfian distribution
齐夫定律(英语:Zipf's law,IPA英语发音:/ˈzɪf/)是由哈佛大学的语言学家乔治·金斯利·齐夫(George Kingsley Zipf)于1949年发表的实验定律. 它可以表述为: 在 ...
- CloudSim4.0报错NoClassDefFoundError,Caused by: java.lang.ClassNotFoundException: org.apache.commons.math3.distribution.UniformRealDistribution
今天下载了CloudSim 4.0的代码,运行其中自带的示例程序,结果有一部分运行错误: 原因是找不到org.apache.commons.math3.distribution.UniformReal ...
- Wishart distribution
Introduction In statistics, the Wishart distribution is generalization to multiple dimensions of the ...
- distribution 中一直在运行 waitfor delay @strdelaytime 语句
Replication 自动创建来一个 Job:Replication monitoring refresher for distribution,这个Agent执行一个sp: dbo.sp_repl ...
随机推荐
- 【CF809D】Hitchhiking in the Baltic States Splay
[CF809D]Hitchhiking in the Baltic States 题意:给你n个区间[li,ri],让你选出从中一个子序列,然后在子序列的每个区间里都选择一个tj,满足$t_1< ...
- node+express实现文件上传功能
在进行node web开发时,我们可能经常遇到上传文件的问题,这一块如果我们没有经验,可能会遇到很多坑,下面我将跟大家分享一下,实现文件上传的一些方式. 一.node+express文件上传的常用方式 ...
- #if 和 #ifdef 条件编译注意
之前写程序很少用到这两个条件编译,只是在头文件的开头使用过 #ifdef ....<CODE>.... #endif,他是防止头文件被重复包含,导致的变量被多处声明或定义. 最近写程序发 ...
- 从Spring到SpringBoot构建WEB MVC核心配置详解
目录 理解Spring WEB MVC架构的演变 认识Spring WEB MVC 传统时代的Spring WEB MVC 新时代Spring WEB MVC SpringBoot简化WEB MVC开 ...
- url写法细节
- JIRA licence and vulnarability,jenkins,devops
http://blog.itpub.net/13651903/viewspace-1079918/ http://www.freebuf.com/articles/web/34051.html JIR ...
- 单调栈&单调队列学习笔记!
ummm,,,都是单调系列就都一起学了算了思想应该都差不多呢qwq 其实感觉这俩没有什么可说的鸭QAQ就是维护一个单调的东西,区别在于单调栈是一段进一段出然后单调队列是一段进另一段出?没了 好趴辣重点 ...
- gulp-jshint使用说明
hint是暗示的意思,jshint是什么意思? 1.使用npm安装 cnpm i --save-dev gulp-jshint jshint ps:gulp-jshint和jshnt要一起下载,安装. ...
- Android(三) 匹配屏幕密度
过去,程序员通常以像素为单位设计计算机用户界面.例如:图片大小为80×32像素.这样处理的问题在于,如果在一个dpi(每英寸点数) 高的显示器上运行该程序,则用户界面会显得很小.在有些情况下,用户界面 ...
- SQL Server 学习博客分享列表(应用式学习 + 深入理解)
SQL Server 学习博客分享列表(应用式学习 + 深入理解) 转自:https://blog.csdn.net/tianjing0805/article/details/75047574 SQL ...