问题由来

在很多机器学习任务中,特征并不总是连续值,而有可能是分类值。

例如,考虑一下的三个特征:

["male", "female"]

["from Europe", "from US", "from Asia"]

["uses Firefox", "uses Chrome", "uses Safari", "uses Internet Explorer"]

如果将上述特征用数字表示,效率会高很多。例如:

["male", "from US", "uses Internet Explorer"] 表示为[0, 1, 3]

["female", "from Asia", "uses Chrome"]表示为[1, 2, 1]

但是,即使转化为数字表示后,上述数据也不能直接用在我们的分类器中。因为,分类器往往默认数据数据是连续的,并且是有序的。但是,按照我们上述的表示,数字并不是有序的,而是随机分配的。

独热编码

为了解决上述问题,其中一种可能的解决方法是采用独热编码(One-Hot Encoding)。

独热编码即 One-Hot 编码,又称一位有效编码,其方法是使用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候,其中只有一位有效。

例如:

自然状态码为:000,001,010,011,100,101

独热编码为:000001,000010,000100,001000,010000,100000

可以这样理解,对于每一个特征,如果它有m个可能值,那么经过独热编码后,就变成了m个二元特征。并且,这些特征互斥,每次只有一个激活。因此,数据会变成稀疏的。

这样做的好处主要有:

  1. 解决了分类器不好处理属性数据的问题

  2. 在一定程度上也起到了扩充特征的作用

物理意义:

独热编码(哑变量 dummy variable)是因为大部分算法是基于向量空间中的度量来进行计算的,为了使非偏序关系的变量取值不具有偏序性,并且到圆点是等距的。举例来说,如果定义颜色变量“ 红= 1,黄=2,蓝=3”,相当于在向量空间中定义了 “红 < 黄 < 蓝”,这与事实是不符的,并且每个值到圆点的距离是不同的,这会影响到基于向量空间度量算法的效果。

重新定义了以后,我们由一个变量,变成了好多个变量,每一个变量距离原点的距离都是一样,都是在相应坐标轴上的。避免了认为的造成了特征的大小的问题。
作者:赵熙
链接:https://www.zhihu.com/question/62555721/answer/204625917
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

举例

我们基于python和Scikit-learn写一个简单的例子:

from sklearn import preprocessing

enc = preprocessing.OneHotEncoder()

enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])

enc.transform([[0, 1, 3]]).toarray()

输出结果:

array([[ 1.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  1.]])

转自:http://blog.sina.com.cn/s/blog_5252f6ca0102uy47.html

数据预处理之独热编码(One-Hot Encoding)(转载)的更多相关文章

  1. 【转】数据预处理之独热编码(One-Hot Encoding)

    原文链接:http://blog.csdn.net/dulingtingzi/article/details/51374487 问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. ...

  2. 机器学习实战:数据预处理之独热编码(One-Hot Encoding)

    问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...

  3. 数据预处理:独热编码(One-Hot Encoding)

    python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...

  4. 数据预处理:独热编码(One-Hot Encoding)和 LabelEncoder标签编码

    一.问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 离散特征的编码分为两种情况: 1.离散特征的取值之间没有大小的意义,比如color:[red,blue],那么就使用one- ...

  5. 机器学习 数据预处理之独热编码(One-Hot Encoding)

    问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...

  6. 数据预处理之独热编码(One-Hot Encoding)

    问题的由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑以下三个特征: ["male","female"] ["from ...

  7. 机器学习:数据预处理之独热编码(One-Hot)

    前言 ———————————————————————————————————————— 在机器学习算法中,我们经常会遇到分类特征,例如:人的性别有男女,祖国有中国,美国,法国等.这些特征值并不是连续的 ...

  8. Scikit-learn库中的数据预处理:独热编码(二)

    在上一篇博客中介绍了数值型数据的预处理但是真实世界的数据集通常都含有分类型变量(categorical value)的特征.当我们讨论分类型数据时,我们不区分其取值是否有序.比如T恤尺寸是有序的,因为 ...

  9. 数据预处理之独热编码(One-Hot):为什么要使用one-hot编码?

    一.问题由来 最近在做ctr预估的实验时,还没思考过为何数据处理的时候要先进行one-hot编码,于是整理学习如下:  在很多机器学习任务如ctr预估任务中,特征不全是连续值,而有可能是分类值.如下: ...

随机推荐

  1. 大数据hadoop与spark的区别

    学习hadoop已经有很长一段时间了,好像是二三月份的时候朋友给了一个国产Hadoop发行版下载地址,因为还是在学习阶段就下载了一个三节点的学习版玩一下.在研究.学习hadoop的朋友可以去找一下看看 ...

  2. 温习《PHP 核心技术与最佳实践》这本书

    再次看这本书,顺手提炼了一下大致目录,以便后续看见目录就知道大概讲的些什么内容 PHP 核心技术与最佳实践 1.面向对象思想的核心概念 1.1 面向对象的『形』与『本』 1.2 魔术方法的应用 1.2 ...

  3. dede模块管理一片空白或没有列表内容的解决办法

    为什么dede后台模块管理,打开之后一片空白,又或者没有列表,插件与其他模块的使用也是正常的. 这主要是因为我们在安装模块,然后又卸载模块,卸载的时候选择了删除安装文件,就会出这个问题. 这里面分为两 ...

  4. unbuntu 安装及服务器配置

    关于分区: 挂载点 装置 说明 / /dev/hda1 15G /home /dev/hda2 最大的剩余空间 /boot /dev/hda3 200MB左右 swap /dev/hda5 大约内存大 ...

  5. press_keycode API 参数查询

    用法 driver.press_ keycode(‘4’) 参数查找url:https://www.cnblogs.com/larack/p/4223465.html

  6. [转]嵌入字体到程序 Winform C#

    http://www.cnblogs.com/top5/archive/2011/06/20/2084942.html 程序安装字体或直接调用非注册字体[c#] .安装字体 //程序直接将字体文件安装 ...

  7. 使用postman模拟appium的http请求

    Appium是Server,接收http请求,使用Postman模拟请求 1.anyproxy 1.1.安装和运行 #安装 npm i -g anyproxy # 运行anyproxy,端口默认800 ...

  8. [UE4]组件

    用来组成Actor的子对象,Actor是由组件组成的. 几个关键的Component类型: 一.UActorComponent 这个Component的基类,可以被放到Actor里面, 可以接受Tic ...

  9. C#后台调用前台javascript的五种方法小结

    第一种,OnClientClick (vs2003不支持这个方法) <asp:Button ID="Button1" runat="server" Tex ...

  10. javascript节点操作replaceChild()

    replaceChild(a,b)是用来替换文档中的已有元素的 参数a:要插入的节点, 参数b:要替换的节点 var oDiv = document.getElementById("guoD ...