求2的n次方对1e9+7的模,n大约为10的100000次方(费马小定理)
昨天做了一个题,简化题意后就是求2的n次方对1e9+7的模,其中1<=n<=10100000。这个就算用快速幂加大数也会超时,查了之后才知道这类题是对费马小定理的考察。
费马小定理:假如p是质数,且gcd(a,p)=1(a,p互质),那么 a^(p-1)≡1(mod p)。
由题可知,1e9+7是个质数(许多结果很大的题都喜欢对1e9+7取模),2是整数,a与p互质显而易见,所以现在我们的目的就是想办法把2^n%(1e9+7)降幂为2^k%(1e9+7),令p=1e9+7,已知a^(p-1) = 1(mod p),且n可能很大很大,就看n里包括多少个p-1,把这些都丢掉求剩下的就好(就是求n mod (p-1),根据取模的性质,这个过程可以将n从第一个数展开过程中边取模完成,详见代码)。假设有x个p-1,则:2^n = 2^(x*(p-1)) * 2^k = 1^x * 2^k = 2^k(mod p),所以直接求2^k就好,k = n%(p-1)。
由于N过于长,就用字符串存储,之后边转化为数边取余。还有就是处理过后的N也不小,求次幂时需要用快速幂。
#include<cstdio>
#include<string>
#include<iostream>
#include<algorithm>
using namespace std; typedef long long LL;
string n;
const LL mod=; LL QuickPower(LL a,LL b){
LL ans=;
while(b){
if(b&){
ans=(ans*a)%mod;
}
b>>=;
a=(a*a)%mod;
}
return ans;
} int main(){
cin>>n;
LL k=(LL)(n[]-''),mod1=mod-;
for(int i=;i<n.length();i++)
k=(k*+(LL)(n[i]-''))%mod1;
printf("%lld\n",QuickPower(,k));
return ;
}
求2的n次方对1e9+7的模,n大约为10的100000次方(费马小定理)的更多相关文章
- LightOJ 1419 – Necklace Polya计数+费马小定理求逆元
题意:给你n个珠子可以染成k种颜色,旋转后相同的视为一种,问共有几种情况 思路:开始按照一般的排列组合做发现情况太多且要太多运算,查了下发现此题是组合中Polya定理模板题- 学的浅只能大致一说公式S ...
- light oj 1067 费马小定理求逆元
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1067 1067 - Combinations Given n differen ...
- 【poj 1284】Primitive Roots(数论--欧拉函数 求原根个数){费马小定理、欧拉定理}
题意:求奇质数 P 的原根个数.若 x 是 P 的原根,那么 x^k (k=1~p-1) 模 P 为1~p-1,且互不相同. (3≤ P<65536) 解法:有费马小定理:若 p 是质数,x^( ...
- 第十四届华中科技大学程序设计竞赛 B Beautiful Trees Cutting【组合数学/费马小定理求逆元/快速幂】
链接:https://www.nowcoder.com/acm/contest/106/B 来源:牛客网 题目描述 It's universally acknowledged that there'r ...
- UVALive-3722 留个坑,为什么费马小定理求逆元不对??
#include <iostream> #include <cstdlib> #include <queue> #include <algorithm> ...
- 给出一列数a1,a2,a3....an,求它们的逆序对数,即有多少个有序对(i,j) 使得iaj,n高达10的6次方
//归并排序 //#include<stdio.h> //#include<string.h> //#include<algorithm> //#include&l ...
- The Super Powers UVA 11752 分析分析 求无符号长整形以内的数满足至少可以用两种不同的次方来表示。比如64 = 2^6 = 8^2; 一个数的1次方不算数。
/** 题目:The Super Powers UVA 11752 链接:https://vjudge.net/contest/154246#problem/Y 题意:求无符号长整形以内的数满足至少可 ...
- 打出10的n次方,上标,下标等处理方法(mac)
我使用mac系统遇到的需求,需要在项目中显示10的6次方 用来做单位,找了很多方案,word等文本编辑工具很好实现(word是使用ctrl + shift + =)(mac 版的word是 Comm ...
- 0.9循环=lim(n趋于无穷大)(1-1/10的n次方),所以这是一个极限问题
0.9循环=lim(n趋于无穷大)(1-1/10的n次方),所以这是一个极限问题 因为lim(...)(1-1/10的n次方)=1 这意味着维尔斯特拉斯发明极限定义之前,这个等号是不成立的,因为没有极 ...
随机推荐
- tcp端口检测
# coding=utf-8 import sys import socket import re def check_server(address, port): s = socket.socket ...
- 敏感词文本文件 filtered_words.txt,里面的内容为以下内容,当用户输入敏感词语时,则打印出 Freedom,否则打印出 Human Rights
敏感词文件内容: 代码: def filtered_words(path='filtered_words.txt'): words = [] with open(path, 'r', encoding ...
- jQuery解决IE6、7、8不能使用 JSON.stringify 函数的问题
https://github.com/douglascrockford/JSON-js使用其中的 json2.js 作为兼容.这个JS中的函数将JSON对象转换成JSON字符串,解决 IE6.7.8. ...
- 5.验证用户名是否已经被注册:AJAXC请求
首先在 web.xml 文件中添加配置信息 <!-- 配置全局的字符集 --> <context-param> <param-name>encode</par ...
- ni_set()函数的使用 以及 post_max_size,upload_max_filesize的修改方法
Apache服务器处理: ini_set('display_errors', 'Off');ini_set('memory_limit', -1); //-1 / 10240Mini_set(&quo ...
- 解决不能正常访问workerman的问题
问题描述: 在阿里云ECS上部署了workerman的应用(ECS是专有网络),在ECS安全组里已经允许workerman需要的全部端口,但是外网一直不能正常打开(注,其他服务,比80端口外部是可以用 ...
- Spark分析之DAGScheduler
DAGScheduler概述:是一个面向Stage层面的调度器: 主要入参有: dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, ...
- IP分组交付和转发
1:交付 网络层监视底层物理网络对分组的处理过程叫做交付,分为直接交付和间接交付 1.1:直接交付 直接交付时,分组的终点是一台与交付着连接在同一个网络上的主机,发生在俩种情况下,分组的源点和终点都在 ...
- 2.mybatis实战教程(mybatis in action)之二:以接口的方式编程
转自:http://www.yihaomen.com/article/java/304.htm 前面一章,已经搭建好了eclipse,mybatis,mysql的环境,并且实现了一个简单的查询. 请注 ...
- jquery 的 $.extend 和 $.fn.extend
$.extend({ add:function(a,b){return a+b;}, bad:function(a,b){return a-b;} }); $.fn.extend({ loading: ...