求2的n次方对1e9+7的模,n大约为10的100000次方(费马小定理)
昨天做了一个题,简化题意后就是求2的n次方对1e9+7的模,其中1<=n<=10100000。这个就算用快速幂加大数也会超时,查了之后才知道这类题是对费马小定理的考察。
费马小定理:假如p是质数,且gcd(a,p)=1(a,p互质),那么 a^(p-1)≡1(mod p)。
由题可知,1e9+7是个质数(许多结果很大的题都喜欢对1e9+7取模),2是整数,a与p互质显而易见,所以现在我们的目的就是想办法把2^n%(1e9+7)降幂为2^k%(1e9+7),令p=1e9+7,已知a^(p-1) = 1(mod p),且n可能很大很大,就看n里包括多少个p-1,把这些都丢掉求剩下的就好(就是求n mod (p-1),根据取模的性质,这个过程可以将n从第一个数展开过程中边取模完成,详见代码)。假设有x个p-1,则:2^n = 2^(x*(p-1)) * 2^k = 1^x * 2^k = 2^k(mod p),所以直接求2^k就好,k = n%(p-1)。
由于N过于长,就用字符串存储,之后边转化为数边取余。还有就是处理过后的N也不小,求次幂时需要用快速幂。
#include<cstdio>
#include<string>
#include<iostream>
#include<algorithm>
using namespace std; typedef long long LL;
string n;
const LL mod=; LL QuickPower(LL a,LL b){
LL ans=;
while(b){
if(b&){
ans=(ans*a)%mod;
}
b>>=;
a=(a*a)%mod;
}
return ans;
} int main(){
cin>>n;
LL k=(LL)(n[]-''),mod1=mod-;
for(int i=;i<n.length();i++)
k=(k*+(LL)(n[i]-''))%mod1;
printf("%lld\n",QuickPower(,k));
return ;
}
求2的n次方对1e9+7的模,n大约为10的100000次方(费马小定理)的更多相关文章
- LightOJ 1419 – Necklace Polya计数+费马小定理求逆元
题意:给你n个珠子可以染成k种颜色,旋转后相同的视为一种,问共有几种情况 思路:开始按照一般的排列组合做发现情况太多且要太多运算,查了下发现此题是组合中Polya定理模板题- 学的浅只能大致一说公式S ...
- light oj 1067 费马小定理求逆元
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1067 1067 - Combinations Given n differen ...
- 【poj 1284】Primitive Roots(数论--欧拉函数 求原根个数){费马小定理、欧拉定理}
题意:求奇质数 P 的原根个数.若 x 是 P 的原根,那么 x^k (k=1~p-1) 模 P 为1~p-1,且互不相同. (3≤ P<65536) 解法:有费马小定理:若 p 是质数,x^( ...
- 第十四届华中科技大学程序设计竞赛 B Beautiful Trees Cutting【组合数学/费马小定理求逆元/快速幂】
链接:https://www.nowcoder.com/acm/contest/106/B 来源:牛客网 题目描述 It's universally acknowledged that there'r ...
- UVALive-3722 留个坑,为什么费马小定理求逆元不对??
#include <iostream> #include <cstdlib> #include <queue> #include <algorithm> ...
- 给出一列数a1,a2,a3....an,求它们的逆序对数,即有多少个有序对(i,j) 使得iaj,n高达10的6次方
//归并排序 //#include<stdio.h> //#include<string.h> //#include<algorithm> //#include&l ...
- The Super Powers UVA 11752 分析分析 求无符号长整形以内的数满足至少可以用两种不同的次方来表示。比如64 = 2^6 = 8^2; 一个数的1次方不算数。
/** 题目:The Super Powers UVA 11752 链接:https://vjudge.net/contest/154246#problem/Y 题意:求无符号长整形以内的数满足至少可 ...
- 打出10的n次方,上标,下标等处理方法(mac)
我使用mac系统遇到的需求,需要在项目中显示10的6次方 用来做单位,找了很多方案,word等文本编辑工具很好实现(word是使用ctrl + shift + =)(mac 版的word是 Comm ...
- 0.9循环=lim(n趋于无穷大)(1-1/10的n次方),所以这是一个极限问题
0.9循环=lim(n趋于无穷大)(1-1/10的n次方),所以这是一个极限问题 因为lim(...)(1-1/10的n次方)=1 这意味着维尔斯特拉斯发明极限定义之前,这个等号是不成立的,因为没有极 ...
随机推荐
- bzoj 1390: [Ceoi2008]Fence
Description 在一个大小为1000*1000的区域中,有n个固定点,m棵tree . 现在你要建一个围栏来保护tree,建它的费用为你选用的固定点的个数 *20和 你没有圈进围栏的tree* ...
- requests-1快速学习
请直接转身官网http://docs.python-requests.org/zh_CN/latest/user/quickstart.html#url](http://docs.python-req ...
- [UE4]事件处理(Handling Events)和委托(Delegate)代码示例(一)
1. 通过重写虚函数来处理事件 MyTriggerVolume.h 自定义一个Actor类,添加一个 Box 组件作为触发区域,然后通过重写虚函数——NotifyActorBeginOverlap, ...
- Linux命令详解-用户管理
1. 用户管理 1.Linux用户管理 linux有三类用户: (1.)超级用户 : root用户具有操作系统的一切权限 uid=0 (2.)普通用户: 具有操作系统有限的权限 uid=500-60 ...
- pig和mysql脚本对比
测试数据位于:/home/hadoop/luogankun/workspace/sync_data/pig dept和emp表来源自oracle数据库自带的表 dept.txt ACCOUNTING ...
- solr之~模糊查询
有的时候,我们一开始不可能准确地知道搜索的关键字在 Solr 中查询出的结果是什么,因此,Solr 还提供了几种类型的模糊查询.模糊匹配会在索引中对关键字进行非精确匹配.例如,有的人可能想要搜索某个前 ...
- ORM创建 脚本运行
- Windows下OpenCV 3.1.0 在 Qt Creator 4.0.2 (Qt 5.7.0 MinGW) 中的开发环境配置
2017-2-23 Update: 修改并添加了部分细节 最近正在学习OpenCV ,为毕业设计做准备.Windows版本的OpenCV都默认提供对VS的支持,其在VS中的配置比较简单,网上也有大批教 ...
- 2018-2019-2 《网络对抗技术》Exp6 信息搜集与漏洞扫描 Week9 20165233
Exp6 信息搜集与漏洞扫描 目录 一.基础问题 二.实验步骤 实验点一:各种搜索技巧的应用 实验点二:DNS IP注册信息的查询 实验点三:基本的扫描技术:主机发现.端口扫描.OS及服务版本探测.具 ...
- php获取服务器信息类
<?php/**+------------------------------------------------------------------------------* 获取服务器信 ...