Loading Data into HAWQ

Loading data into the database is required to start using it but how? There are several approaches to achieve this basic requirement but achieve the result by approaching the problem in different ways. This allows you to load data that best matches your use case.

Table Setup
This table will be used for the testing in HAWQ. I have this table
created in a single node VM running Hortonworks HDP with HAWQ 2.0
installed. I’m using the default Resource Manager too.

CREATE TABLE test_data
(id int,
fname text,
lname text)
DISTRIBUTED RANDOMLY;

Singleton
Let’s start with probably the worst way first. Sometimes this way is
ideal because you have very little data to load but in most cases, avoid
singleton inserts. This approach inserts just a single tuple in a
single transaction.

head si_test_data.sql
insert into test_data (id, fname, lname) values (1, 'jon_00001', 'roberts_00001');
insert into test_data (id, fname, lname) values (2, 'jon_00002', 'roberts_00002');
insert into test_data (id, fname, lname) values (3, 'jon_00003', 'roberts_00003');
insert into test_data (id, fname, lname) values (4, 'jon_00004', 'roberts_00004');
insert into test_data (id, fname, lname) values (5, 'jon_00005', 'roberts_00005');
insert into test_data (id, fname, lname) values (6, 'jon_00006', 'roberts_00006');
insert into test_data (id, fname, lname) values (7, 'jon_00007', 'roberts_00007');
insert into test_data (id, fname, lname) values (8, 'jon_00008', 'roberts_00008');
insert into test_data (id, fname, lname) values (9, 'jon_00009', 'roberts_00009');
insert into test_data (id, fname, lname) values (10, 'jon_00010', 'roberts_00010');

This repeats for 10,000 tuples.

time psql -f si_test_data.sql > /dev/null
real 5m49.527s

As you can see, this is pretty slow and not recommended for inserting large amounts of data. Nearly 6 minutes to load 10,000 tuples is crawling.

COPY
If you are familiar with PostgreSQL then you will feel right at home
with this technique. This time, the data is in a file named
test_data.txt and it is not wrapped with an insert statement.

head test_data.txt
1|jon_00001|roberts_00001
2|jon_00002|roberts_00002
3|jon_00003|roberts_00003
4|jon_00004|roberts_00004
5|jon_00005|roberts_00005
6|jon_00006|roberts_00006
7|jon_00007|roberts_00007
8|jon_00008|roberts_00008
9|jon_00009|roberts_00009
10|jon_00010|roberts_00010
COPY test_data FROM '/home/gpadmin/test_data.txt' WITH DELIMITER '|';
COPY 10000
Time: 128.580 ms

This method is significantly faster but it loads the data through the master. This means it doesn’t scale well as the master will become the bottleneck but it does allow you to load data from a host anywhere on your network so long as it has access to the master.

gpfdist
gpfdist is a web server that serves posix files for the segments to
fetch. Segment processes will get the data directly from gpfdist and
bypass the master when doing so. This enables you to scale by adding
more gpfdist processes and/or more segments.

gpfdist -p 8888 &
[1] 128836
[gpadmin@hdb ~]$ Serving HTTP on port 8888, directory /home/gpadmin

Now you’ll need to create a new external table to read the data from gpfdist.

CREATE EXTERNAL TABLE gpfdist_test_data
(id int,
fname text,
lname text)
LOCATION ('gpfdist://hdb:8888/test_data.txt')
FORMAT 'TEXT' (DELIMITER '|');

And to load the data.

INSERT INTO test_data SELECT * FROM gpfdist_test_data;
INSERT 0 10000
Time: 98.362 ms

gpfdist is blazing fast and scales easily. You can add more than one gpfdist location in the external table, use wild cards, use different formats, and much more. The downside is the file must be on a host that all segments can reach. You also have to create a separate gpfdist process on that host.

gpload
gpload is a utility that automates the loading process by using gpfdist.
Review the documentation for more on this utility. Technically, it is
the same as gpfdist and external tables but just automates the commands
for you.

Programmable Extension Framework (PXF)
PXF allows you to read and write data to HDFS using external tables.
Like using gpfdist, it is done by each segment so it scales and executes
in parallel.

For this example, I’ve loaded the test data into HDFS.

hdfs dfs -cat /test_data/* | head
1|jon_00001|roberts_00001
2|jon_00002|roberts_00002
3|jon_00003|roberts_00003
4|jon_00004|roberts_00004
5|jon_00005|roberts_00005
6|jon_00006|roberts_00006
7|jon_00007|roberts_00007
8|jon_00008|roberts_00008
9|jon_00009|roberts_00009
10|jon_00010|roberts_00010

The external table definition.

CREATE EXTERNAL TABLE et_test_data
(id int,
fname text,
lname text)
LOCATION ('pxf://hdb:51200/test_data?Profile=HdfsTextSimple')
FORMAT 'TEXT' (DELIMITER '|');

And now to load it.

INSERT INTO test_data SELECT * FROM et_test_data;
INSERT 0 10000
Time: 227.599 ms

PXF is probably the best way to load data when using the “Data Lake” design. You load your raw data into HDFS and then consume it with a variety of tools in the Hadoop ecosystem. PXF can also read and write other formats.

Outsourcer and gplink
Last but not least are software programs I created. Outsourcer
automates the table creation and load of data directly to Greenplum or
HAWQ using gpfdist. It sources data from SQL Server and Oracle as these
are the two most common OLTP databases.

gplink is another tool that can read external data but this technique
can connect to any valid JDBC source. It doesn’t automate many of the
steps that Oustourcer does but it is a convenient tool to get data from a
JDBC source.

You might be thinking that sqoop does this but not exactly. gplink
and Outsourcer load data into HAWQ and Greenplum tables. It is
optimized for these databases and fixes data for you automatically.
Both remove null and newline characters and escapes the escape and
delimiter characters. With sqoop, you will have to read the data from
HDFS using PXF and then fix the errors that could be in the files.

Both tools are linked above.

Summary
This post gives a brief description on the various ways to load data
into HAWQ. Pick the right technique for your use case. As you can see,
HAWQ is very flexible and can handle a variety of ways to load data.

This entry was posted in Hadoop on July 14, 2016.

[转帖]Loading Data into HAWQ的更多相关文章

  1. Loading Data into HDFS

    How to use a PDI job to move a file into HDFS. Prerequisites In order to follow along with this how- ...

  2. 使用OGG"Loading data from file to Replicat"的方法应该注意的问题:replicat进程是前台进程

    使用OGG的 "Loading data from file to Replicat"的方法应该注意的问题:replicat进程是前台进程 因此.最好是在vncserver中调用该 ...

  3. OGG "Loading data from file to Replicat"table静态数据同步配置过程

    OGG "Loading data from file to Replicat"table静态数据同步配置过程 一个.mgr过程 GGSCI (lei1) 3> view p ...

  4. Loading Data into a Table;MySQL从本地向数据库导入数据

    在localhost中准备好了一个test数据库和一个pet表: mysql> SHOW DATABASES; +--------------------+ | Database | +---- ...

  5. loading data into a table(亲测有效)

    一.实验要求 导入数据到数据库的表里    表内容如下: name owner species sex birth death Fluffy Harold cat f 1993-02-04   Cla ...

  6. HeadFirst Ruby 第十五章总结 Saving and loading data

    前言 在上一章讲述了如何进行基础的操作,比如 处理 GET 请求的 get route, 再比如下载 gem 等等方面的知识.在这一章节,作者告诉我们如何储存.处理数据.整个过程分三步走: 首先,当 ...

  7. 解决eclipse+adt出现的 loading data for android 问题

    因为公司最近做的项目中有用到一些第三方demo,蛋疼的是这些demo还比较旧...eclipse的... 于是给自己的eclipse装上了ADT插件,但是...因为我的eclipse比较新,Versi ...

  8. [MST] Loading Data from the Server using lifecycle hook

    Let's stop hardcoding our initial state and fetch it from the server instead. In this lesson you wil ...

  9. fake_useragent—Error occurred during loading data报错问题

    问题如下 解决方法: 在自己的临时文件下新建一个fake_useragent_0.1.11.json 把下面的文字复制进去 临时文件 直接输入cmd %temp% 即可进去 { "rando ...

随机推荐

  1. C语言基础二(敲打键盘、寻找资料)

    看过很多资料的人,估计发觉了什么,我上篇的基础一其中一个最致命的错误,没有加return 0; 为什么不加,说真的,我留个坑,所以跳跃性的直接说到函数是如何运用的. 上章说到main就是主入口,根据m ...

  2. Python-copy()与deepcopy()区别

    http://blog.csdn.net/qq_32907349/article/details/52190796 学习过程中发现copy()和deepcopy()这对好基友实在是有点过分,搞的博主就 ...

  3. HTML(一)

    html基本结构 一个html的基本结构如下: <!DOCTYPE html> <html lang="en"> <head> <meta ...

  4. R语言语法基础二

    R语言语法基础二 重塑数据 增加行和列 # 创建向量 city = c("Tampa","Seattle","Hartford"," ...

  5. Alpha冲刺——序言篇(任务与计划)

    所属课程 软件工程1916|W(福州大学) 作业要求 Alpha冲刺--序言篇 团队名称 待就业六人组 一.代码规范 详见项目在线文档:项目代码规范 二.本次冲刺任务与计划 任务 内容 时间 第一天 ...

  6. 【数论&想法题】小C的问题 @"科林明伦杯"哈尔滨理工大学第八届程序设计竞赛

    Time Limit: 1000 MS Memory Limit: 256000 K Description 小C是一个可爱的女孩,她特别喜欢世界上最稳定的图形:三角形.有一天她得到了n根木棍,她把这 ...

  7. openstack之glance基础

    第一:glance是什么? glance是Image service的项目代号,是Openstack的镜像服务组件,为创建虚拟机提供镜像服务. 第二:glance的功能 Glance主要提供了一个虚拟 ...

  8. IO流(3)—字节流

    IO体系: 抽象基类----节点流(文件流) InputStream--FileInputStream(字节流) OutputStream--FileOutputSteam(字节流) Reader - ...

  9. mui 打开外网链接返回的正姿势!

    我们的返回分两种: 一:按返回按钮只能返回上一页 二:向右滑动一步返回app的面页

  10. KVM之CPU虚拟化

    1.1 为什么要虚拟化CPU 虚拟化技术是指在x86的系统中,一个或以上的客操作系统(Guest Operating System,简称:Guest OS)在一个主操作系统(Host Operatin ...