BZOJ3028 食物(生成函数)
显然构造出生成函数:则有f(x)=(1+x2+x4+……)·(1+x)·(1+x+x2)·(x+x3+x5+……)·(1+x4+x8+……)·(1+x+x2+x3)·(1+x)·(1+x3+x6+……)。
化为有限,则有f(x)=x(1+x)2·(1+x+x2)·(1+x+x2+x3)/(1-x2)2·(1-x3)·(1-x4)=x·(1+x+x2)·(1+x)/(1-x)2·(1-x3)·(1-x2)=x·(1+x)/(1-x)3·(1-x2)=x/(1-x)4。
广义二项式定理暴算。则有f(x)=x·(C(-4,0)·(-x)0+C(-4,1)·(-x)1+……)。考虑C(-4,n)=(-4)·(-5)·……·(-4-n+1)/n!=(-1)n·(n+3)!/3!/n!=(-1)n·C(n+3,3)。则f(x)=C(3,3)·x+C(4,3)·x2+……。
即答案为C(n+2,3)=n(n-1)(n-2)/6。求一下6在模10007下的逆元就好。观察到6整除10008甚至可以直接算逆元。
(怎么我一交darkbzoj就上不去了
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define p 10007
int read()
{
int x=;char c=getchar();
while (c>=''&&c<='') x=((x<<)+(x<<)+(c^))%p,c=getchar();
return x;
}
int n;
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3028.in","r",stdin);
freopen("bzoj3028.out","w",stdout);
const char LL[]="%I64d";
#else
const char LL[]="%lld";
#endif
n=read()+;
cout<<n*(n+p-)%p*(n+p-)%p*%p;
return ;
}
BZOJ3028 食物(生成函数)的更多相关文章
- BZOJ3028食物——生成函数+泰勒展开
题目描述 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应 该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数.他这次又准备带一些 ...
- BZOJ3028: 食物(生成函数)
题意 链接 Sol 生成函数入门题. 对每个物品分别列一下,化到最后是\(\frac{x}{(1-x)^4}\) 根据广义二项式定理,最后答案是\(C_{(N - 1) + 4 - 1}^{4-1} ...
- BZOJ3028 食物 (生成函数)
首先 1+x+x^2+x^3+...+x^∞=1/(1-x) 对于题目中的几种食物写出生成函数 (对于a*x^b , a表示方案数 x表示食物,b表示该种食物的个数) f(1)=1+x^2+x^4+. ...
- 2018.12.30 bzoj3028: 食物(生成函数)
传送门 生成函数模板题. 我们直接把每种食物的生成函数列出来: 承德汉堡:1+x2+x4+...=11−x21+x^2+x^4+...=\frac 1{1-x^2}1+x2+x4+...=1−x21 ...
- 【bzoj3028】 食物 生成函数+隔板法
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3028 这题的推导很妙啊,裸的推母函数的题. 我们首先构造出每种食物的母函数: 汉堡:$ ...
- bzoj3028食物
http://www.lydsy.com/JudgeOnline/problem.php?id=3028 好吧,这是我第一道生成函数的题目. 先搞出各种食物的生成函数: 汉堡:$1+x^2+x^4+. ...
- BZOJ 3028: 食物 [生成函数 隔板法 | 广义二项式定理]
3028: 食物 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 497 Solved: 331[Submit][Status][Discuss] De ...
- BZOJ 3028 食物 (生成函数+数学题)
题面:BZOJ传送门 题目让我们求这些物品在合法范围内任意组合,一共组合出$n$个物品的方案数 考虑把每种食物都用生成函数表示出来,然后用多项式乘法把它们乘起来,第$n$项的系数就是方案数 汉堡:$1 ...
- BZOJ3028 食物 和 LOJ6261 一个人的高三楼
总结一下广义二项式定理. 食物 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数 ...
随机推荐
- SkylineGlobe6.5版本,在矿山、石油、天然气等能源行业的最新应用DEMO演示
SkylineGlobe6.5版本,在矿山.石油.天然气等能源行业的最新应用DEMO演示: http://v.youku.com/v_show/id_XNTc3Njc1OTEy.html 一个Pres ...
- ESP8266开发综合篇(LUA开发-视频教程总揽)
为了解决基础教程简单入门但不实用,项目方案非常实用但比较难的问题,开始推出8266开发综合篇 综合篇涉及到AT,LUA,SDK,LUA(sdk)开发,LUA和SDK开发会同步进行,后期再整理AT指令的 ...
- BZOJ1178 APIO2009 会议中心 贪心、倍增
传送门 只有第一问就比较水了 每一次贪心地选择当前可以选择的所有线段中右端点最短的,排序之后扫一遍即可. 考虑第二问.按照编号从小到大考虑每一条线段是否能够被加入.假设当前选了一个区间集合\(T\), ...
- Jenkins 配置 Node.js 项目
开始 弄清楚 Jenkins 服务器 用 Jenkins 管理员账号下载 NodeJS Plugin 系统管理 ---> 全局工具配置 ---> NodeJS ---> 安装 --- ...
- 阿里Java面经大全(整合版)
本文里的面经内容全部来源于牛客网,作为秋招备战复习与查缺补漏时使用.里面部分面经有我的注释和想法,以及部分解答,不一定正确,大家可以查询补充. 阿里巴巴,三面,java实习 昨天晚上11点打电话来,问 ...
- python第二周
第二周,PYTHON图形绘制 一,计算机技术的演进发展 1946-1981.从第一台计算机的诞生到IBM的PC机的出现,我们称之为”计算机系统结构时代“.————这个时代重点在解决计算能力问题 198 ...
- 使用canvas实现一个圆球的触壁反弹
HTML <canvas id="canvas" width="500" height="500" style="borde ...
- 基于HTML5 Canvas 实现地铁站监控
伴随国内经济的高速发展,人们对安全的要求越来越高.为了防止下列情况的发生,您需要考虑安装安防系统: 提供证据与线索:很多工厂银行发生偷盗或者事故相关机关可以根据录像信息侦破案件,这个是非常重要的一个线 ...
- SpringBoot笔记--Jackson
SpringUtil.getBean<GenericConversionService>().addConverter(Date2LocalDateTimeConverter()) var ...
- Python进阶量化交易专栏场外篇7- 装饰器计算代码时间
欢迎大家订阅<教你用 Python 进阶量化交易>专栏!为了能够提供给大家更轻松的学习过程,笔者在专栏内容之外已陆续推出一些手记来辅助同学们学习本专栏内容,目前已推出如下扩展篇: 在第一篇 ...