如果a和p互质,用扩欧求逆元就可以直接套用普通BSGS。考虑怎么将其化至这种情况。

  注意到当x>=logp时gcd(ax,p)是一个定值,因为这样的话每个存在于a中的质因子,其在ax中的出现次数一定比在p中的多。

  于是对x<logp的情况暴力验证。对x>=logp的情况,设d=gcd(ax,p),剩下的问题变为求ax/d≡b/d(mod p/d),这里ax和p/d显然就是互质的了。

  要求解这个方程,显然不能把d直接乘过去(好像也说不清为啥)。首先b%d>0时无解。然后考虑从ax中分离一部分,使该部分能整除d,再将该部分除以d后移到式子右边。直接分离的话会爆long long,每次分离一个a即可。剩下的就是普通BSGS了。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<map>
using namespace std;
#define ll long long
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int a,p,b;
map<int,int> f;
void exgcd(int a,int b,int &x,int &y)
{
if (b==)
{
x=,y=;
return;
}
exgcd(b,a%b,x,y);
int t=x;x=y;y=t-a/b*x;
}
int inv(int a)
{
int x,y;exgcd(a,p,x,y);
x=(x%p+p)%p;
return x;
}
int BSGS(int a,int b,int p)
{
int block=sqrt(p),t=;//cout<<a<<' '<<b<<' '<<p<<endl;
f.clear();
for (int i=;i<block;i++)
{
if (f.find(t)==f.end()) f[t]=i;
if (t==b) return i;
t=1ll*t*a%p;
}
int v=t;
for (int i=;i<=(p-)/block;i++)
{
if (f.find(1ll*b*inv(t)%p)!=f.end()) return i*block+f[1ll*b*inv(t)%p];
t=1ll*t*v%p;
}
return -;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("exbsgs.in","r",stdin);
freopen("exbsgs.out","w",stdout);
#endif
a=read(),p=read(),b=read();
while (a)
{
if (p==) printf(b==?"0\n":"No Solution\n");
else if (b==) printf("0\n");
else
{
int t=,ans=;
for (int i=;i<=;i++)
{
t=1ll*t*a%p;
if (t==b) {ans=i;break;}
}
if (!ans)
{
int u=gcd(p,t);
if (b%u==)
{
//a^x/u=b/u (%p/u)
int P=p;b/=u;p/=u;
for (int i=;i<=;i++)
if (P==p) {ans=i-;break;}
else
{
int u=gcd(a,P);
b=1ll*b*inv(a/u)%p;
P/=u;
}
ans+=BSGS(a,b,p);ans=max(ans,);
}
}
if (ans) printf("%d\n",ans);
else printf("No Solution\n");
}
a=read(),p=read(),b=read();
}
return ;
}

Luogu4195 【模板】exBSGS(exBSGS)的更多相关文章

  1. 【模板】exBSGS/Spoj3105 Mod

    [模板]exBSGS/Spoj3105 Mod 题目描述 已知数\(a,p,b\),求满足\(a^x\equiv b \pmod p\)的最小自然数\(x\). 输入输出格式 输入格式: 每个测试文件 ...

  2. LG4195 【模板】exBSGS

    exBSGS 已知数\(a,p,b\),求满足\(a^x≡b\ (\bmod p)\)的最小自然数\(x\). \(100\%\)的数据,\(a,p,b≤10^9\). _皎月半洒花的题解 其实本质上 ...

  3. P4195 【模板】exBSGS/Spoj3105 Mod

    传送门 首先要懂得 $BSGS$,$BSGS$ 可以求出关于 $Y$ 的方程 $X^Y \equiv Z (mod\ mo)$ 的最小解,其中 $gcd(X,Z)=1$ $exBSGS$ 算是 $BS ...

  4. 算法笔记--BSGS && exBSGS 模板

    https://www.cnblogs.com/sdzwyq/p/9900650.html 模板: unordered_map<int, int> mp; LL q_pow(LL n, L ...

  5. 模板BSGS(SDOI2011计算器) 模板EXBSGS

    BSGS和EXBSGS是OI中用于解决A^xΞB(mod C)的常用算法. 1.BSGS BSGS用于A,C互质的情况. 令m=sqrt(C),此时x可表示为i*m+j. 式中i和j都<=sqr ...

  6. BSGS和EXBSGS

    也许更好的阅读体验 \(Description\) 给定\(a,b,p\),求一个\(x\)使其满足\(a^x\equiv b\ \left(mod\ p\right)\) \(BSGS\) \(BS ...

  7. BSGS及其扩展

    目录 定义 原理 朴素算法 数论分块 例题 Luogu2485 [SDOI2011]计算器 题解 代码 扩展 例题 Luogu4195 [模板]exBSGS/Spoj3105 Mod 代码 之前写了一 ...

  8. 数论ex

    数论ex 数学学得太差了补补知识点or复习 Miller-Rabin 和 Pollard Rho Miller-Rabin 前置知识: 费马小定理 \[ a^{p-1}\equiv 1\pmod p, ...

  9. BSGS算法及其扩展

    bsgs算法: 我们在逆元里曾经讲到过如何用殴几里得求一个同余方程的整数解.而\(bsgs\)就是用来求一个指数同余方程的最小整数解的:也就是对于\(a^x\equiv b \mod p\) 我们可以 ...

随机推荐

  1. 2-STM32物联网开发WIFI(ESP8266)+GPRS(Air202)系统方案升级篇(视频总揽)

    1-STM32物联网开发WIFI(ESP8266)+GPRS(Air202)系统方案升级篇(方案总揽) https://v.youku.com/v_show/id_XNDE0Njk3Njg2OA==. ...

  2. Android popupMenu

    popupMenu = new PopupMenu(ActivityHousesNumList.this, imageViewhousesnum1); popupMenu.getMenuInflate ...

  3. day85

    频率校验 源码分析 声明:基于rest_framework的频率校验 1.首先我们进入到APIView下的dispatch,因为由此方法开始分发的 2.可以看到dispatch方法下有一个initia ...

  4. Python写代码的时候为什么要注释?Sun因此被Oracle收购

    导读: 此块分为:1.注释的重要性 2.如何正确注释 注释的重要性 在我们看代码的时候,会遇到很多看不懂得代码,特别是在做项目的时候,代码的注释以及命名习惯的重要性就有了为什么这么说呢? 因为在很多情 ...

  5. Ionic App之国际化(2) json数组的处理

    在Ionic App值国际化(1)中我们实现了对单个参数的多语言处理,下面开始如何进行数组的处理. 1.在我们的多语言文件中设置要访问的json数组,en.json和zh.json,此处就以en.js ...

  6. MonkeyRunner 模块

    用python编写脚本   1.导入模块: MonkeyRunner MonkeyDevice MonkeyImage ps:如果给导入模块起别名,就应该使用别名,而不能使用原名,否则会出现错误. f ...

  7. [Spark][Python]PageRank 程序

    PageRank 程序: file contents: page1 page3page2 page1page4 page1page3 page1page4 page2page3 page4 def c ...

  8. .net core实践系列之短信服务-为什么选择.net core(开篇)

    前言 从今天我将会写.net core实战系列,以我最近完成的短信服务作为例子.该系列将会尽量以最短的时间全部发布出来.源码也将优先开源出来给大家. 源码地址:https://github.com/S ...

  9. webpack详细配置解析

    阅读本文之前,先看下面这个webpack的配置文件,如果每一项你都懂,那本文能带给你的收获也许就比较有限,你可以快速浏览或直接跳过:如果你和十天前的我一样,对很多选项存在着疑惑,那花一段时间慢慢阅读本 ...

  10. 网络编程学习笔记:Socket编程

    文的主要内容如下: 1.网络中进程之间如何通信? 2.Socket是什么? 3.socket的基本操作 3.1.socket()函数 3.2.bind()函数 3.3.listen().connect ...