题目描述

给出一个正整数x,问x最少能由多少个Fibonacci数加减算出。
例如1070=987+89-5-1,因此x=1070时答案是4。

输入

第一行一个正整数q (q<=10),表示有q组输出。
下面q行每行一个正整数x (x<=4*10^17)。

输出

输出q行,依次表示每个输出的答案。

样例输入

1
1070

样例输出

4
 
  因为f[i]=f[i-1]+f[i-2],f[i+1]=f[i]+f[i-1],能得到2f[i]=f[i+1]+f[i-2],所以最优答案一定存在没有一个FIB数被选两次的情况。预处理出FIB数,每一次二分找到最大的小于等于x的FIB数和最小的大于等于x的FIB数,然后求出差的绝对值,递归绝对值小的。至于为什么每次都取最接近x的,这样可以使递归要找的数更小,使答案更优。为什么每次要选最接近x的数?因为我们知道FIB数每一项等于前两项之和,如果每一次不选最大的,因为每一次选的都是越来越小的,那么要想加和等于能选的最大的,就要更多次数。
#include<set>
#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define mid ((l+r)>>1)
using namespace std;
long long f[600];
long long cnt=1;
int t;
long long x;
long long findL(long long x)
{
int l=1;
int r=cnt;
int ans=1;
while(l<=r)
{
if(f[mid]<=x)
{
ans=mid;
l=mid+1;
}
else
{
r=mid-1;
}
}
return f[ans];
}
long long findR(long long x)
{
int l=1;
int r=cnt;
int ans=1;
while(l<=r)
{
if(f[mid]>=x)
{
ans=mid;
r=mid-1;
}
else
{
l=mid+1;
}
}
return f[ans];
}
int find(long long x)
{
long long l=findL(x);
long long r=findR(x);
if(l==r)
{
return 1;
}
if(x-l<=r-x)
{
return find(x-l)+1;
}
else
{
return find(r-x)+1;
}
}
int main()
{
f[0]=f[1]=1;
while(f[cnt-1]<=4e17)
{
f[++cnt]=f[cnt-1]+f[cnt-2];
}
scanf("%d",&t);
while(t--)
{
scanf("%lld",&x);
printf("%d\n",find(x));
}
}

BZOJ2796[Poi2012]Fibonacci Representation——贪心+二分查找的更多相关文章

  1. [BZOJ2796][Poi2012]Fibonacci Representation

    由于是斐波那契数列,所以$x_i+x_j<=x_k,i<j<k$ 所以猜测可以贪心选择两边近的数处理. #include<cstdio> #include<algo ...

  2. 贪心/二分查找 BestCoder Round #43 1002 pog loves szh II

    题目传送门 /* 贪心/二分查找:首先对ai%=p,然后sort,这样的话就有序能使用二分查找.贪心的思想是每次找到一个aj使得和为p-1(如果有的话) 当然有可能两个数和超过p,那么an的值最优,每 ...

  3. Codeforces Round #768 (Div. 2) D. Range and Partition // 思维 + 贪心 + 二分查找

    The link to problem:Problem - D - Codeforces   D. Range and Partition  time limit per test: 2 second ...

  4. 【bzoj2796】 [Poi2012]Fibonacci Representation

    给出一个数字,用FIB数列各项加加减减来得到. 问最少要多少个(可以重复使用) 大概试了一下,fibonacci数列的增长是很快的,大概到了90+项就超过了题目范围…… 所以每次找一个最近的fibon ...

  5. hdu 4190 Distributing Ballot Boxes(贪心+二分查找)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4190 Distributing Ballot Boxes Time Limit: 20000/1000 ...

  6. bzoj 2796: [Poi2012]Fibonacci Representation

    结论貌似是,,,肯定只有没有重复的数字.http://hzwer.com/6426.html 一开始猜的是贪心,感觉也是可以的啊...(想想都有道理,然而看到是神奇的(dp类)记忆化搜索,直接虚的不敢 ...

  7. BZOJ [Poi2012]Fibonacci Representation

    找最近的数 记忆化 (我也不知道为什么对的) #include<cstdio> #include<algorithm> #include<map> using na ...

  8. [POI2012]ROZ-Fibonacci Representation (贪心)

    大意: 给定数$n$, 求将$n$划分为最少的斐波那契数的和或差. 每次取相邻$n$的斐波那契数一定最优, 考虑证明. 结论1:存在一个最优解,使得每个斐波那契数使用不超过1次.(考虑$2F_n=F_ ...

  9. 抄书(B - 二分查找)

    抄书  (二分查找+贪心) 提示:二分查找一般写成非递归形式 时间复杂度:O(logn) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action? ...

随机推荐

  1. java 入门常识

    1.java应用程序的运行机制 Java首先利用文本编辑器编写 Java源程序,源文件的后缀名为.java:再利用编译器(javac)将源程序编译成字节码文件,字节码文件的后缀名为.class: 最后 ...

  2. 利用shell脚本或者php移动某个文件夹下的文件到各自的日期组成的目录下

    背景是这样的:网站一开始访问量比较小,大家就把所有的图片文件上传到一个目录下(比如是/data/images/).后来访问量大了,图片也多了,这样就影响读取效率.所以有个这样的需求,把这些个图片文件移 ...

  3. EF 利用PagedList进行分页并结合查询 方法2

    微软提供了PagedList分页,相信大家在网上也能搜索一大堆关于pagedList用法的博客,论坛.但是,在使用的过程中一不小心,就会掉入pagedList某种常规用法的陷阱. 我所说的某种常规用法 ...

  4. linux svn代码回滚命令

    取消对代码的修改分为两种情况: 第一种情况:改动没有被提交(commit). 这种情况下,使用svn revert就能取消之前的修改. svn revert用法如下: # svn revert [-R ...

  5. Spring+SpringMVC+MyBatis+easyUI整合进阶篇(七)一次线上Mysql数据库崩溃事故的记录

    作者:13 GitHub:https://github.com/ZHENFENG13 版权声明:本文为原创文章,未经允许不得转载. 文章简介 工作这几年,技术栈在不断更新,项目管理心得也增加了不少,写 ...

  6. Python_初识函数和返回值_22

    #len s = '金老板小护士' len(s) def my_len(): #自定义函数 i = 0 for k in s: i += 1 print(i) length = my_len() pr ...

  7. 饿了么element UI<el-dialog>弹出层</el-dialog>修改默认样式不能在<style scoped>修改

    如果在非scoped下,修改el-dialog自动添加的DIV类名的style加上important,可以覆盖原来的width,但这样会让整个项目的样式都乱套. 如果在scoped下修改style.所 ...

  8. 【个人阅读】M1/M2阶段总结

    1.以前博客的链接 http://www.cnblogs.com/zyctsl/p/4028006.html http://www.cnblogs.com/zyctsl/p/4094011.html ...

  9. 第十次Scrum meeting

    第十次Scrum  meeting 任务及完成度: 成员 1.2 1.3 陈谋 任务1040:完成stackoverflow的数据处理后的json处理(100%) 任务1114-2:完成对pdf.pp ...

  10. Linux内核分析第四章读书笔记

    第四章 进程调度 进程调度程序:确保进程能有效工作的一个内核子程序 决定将哪个进程投入运行,何时运行已经运行多长时间 进程调度程序可看做在可运行态进程之间分配有限的处理器时间资源的内核子系统 原则:只 ...