BZOJ3175[Tjoi2013]攻击装置——二分图最大独立集
题目描述
给定一个01矩阵,其中你可以在0的位置放置攻击装置。每一个攻击装置(x,y)都可以按照“日”字攻击其周围的 8个位置(x-1,y-2),(x-2,y-1),(x+1,y-2),(x+2,y-1),(x-1,y+2),(x-2,y+1), (x+1,y+2),(x+2,y+1)
求在装置互不攻击的情况下,最多可以放置多少个装置。
输入
输出
样例输入
010
000
100
样例输出
提示
100%数据 N<=200
将矩阵黑白染色(就是相邻格子染不同颜色),可以发现每个攻击装置能攻击到的格子和它所在格子染色不同,将源点连向白色格子,黑色格子连向汇点,每个白点连向能攻击到的黑点,跑二分图最大匹配,然后用总格子数-最大匹配-矩阵中1的个数。这个为什么是对的?因为相连的点表示能互相攻击到,去掉二分图最大匹配的边之后剩下的点之间一定不相连就一定不会互相攻击到。同时给这个残留的二分图加上之前任何一个删除的点都会有匹配边,所以这样是最大的。
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
int next[1000001];
int to[1000001];
int val[1000001];
int head[1000001];
int tot=1;
int q[100001];
int n,k;
int S,T;
int ans=0;
int x,y;
int d[100001];
char s[1001][1001];
int c[1001][1001];
const int dx[]={-2,-1,1,2,2,1,-1,-2};
const int dy[]={1,2,2,1,-1,-2,-2,-1};
void add(int x,int y,int v)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
val[tot]=v;
tot++;
next[tot]=head[y];
head[y]=tot;
to[tot]=x;
val[tot]=0;
}
bool bfs(int S,int T)
{
int r=0;
int l=0;
memset(q,0,sizeof(q));
memset(d,-1,sizeof(d));
q[r++]=S;
d[S]=0;
while(l<r)
{
int now=q[l];
for(int i=head[now];i;i=next[i])
{
if(d[to[i]]==-1&&val[i]!=0)
{
d[to[i]]=d[now]+1;
q[r++]=to[i];
}
}
l++;
}
if(d[T]==-1)
{
return false;
}
else
{
return true;
}
}
int dfs(int x,int flow)
{
if(x==T)
{
return flow;
}
int now_flow;
int used=0;
for(int i=head[x];i;i=next[i])
{
if(d[to[i]]==d[x]+1&&val[i]!=0)
{
now_flow=dfs(to[i],min(flow-used,val[i]));
val[i]-=now_flow;
val[i^1]+=now_flow;
used+=now_flow;
if(now_flow==flow)
{
return flow;
}
}
}
if(used==0)
{
d[x]=-1;
}
return used;
}
void dinic()
{
while(bfs(S,T)==true)
{
ans+=dfs(S,0x3f3f3f);
}
}
int main()
{
scanf("%d",&n);
S=n*n+1;
T=n*n+2;
for(int i=1;i<=n;i++)
{
scanf("%s",s[i]+1);
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(s[i][j]=='0')
{
c[i][j]=(i-1)*n+j;
if((i+j)%2==0)
{
add(S,c[i][j],1);
}
else
{
add(c[i][j],T,1);
}
}
else
{
k++;
}
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(s[i][j]!='1'&&(i+j)%2==0)
{
for(int m=0;m<=7;m++)
{
int fx=dx[m]+i;
int fy=dy[m]+j;
if(fx>0&&fx<=n&&fy>0&&fy<=n&&c[fx][fy]!=-1)
{
add(c[i][j],c[fx][fy],0x3f3f3f);
}
}
}
}
}
dinic();
printf("%d",n*n-k-ans);
}
BZOJ3175[Tjoi2013]攻击装置——二分图最大独立集的更多相关文章
- BZOJ3175:[TJOI2013]攻击装置(二分图最大独立集)
Description 给定一个01矩阵,其中你可以在0的位置放置攻击装置.每一个攻击装置(x,y)都可以按照“日”字攻击其周围的 8个位置(x-1,y-2),(x-2,y-1),(x+1,y-2), ...
- bzoj4808: 马 & bzoj3175: [Tjoi2013]攻击装置 (黑白染色+最小割)
bzoj4808: 马 & bzoj3175: [Tjoi2013]攻击装置 题目:传送门 简要题意: 和n皇后问题差不多,但是这里是每个棋子走日子,而且有些格子不能放棋子.求最多能放多少个棋 ...
- BZOJ3175: [Tjoi2013]攻击装置
题解: 最大点独立集...好像水过头了... 不过发现我二分图好像忘完了!!! 代码: #include<cstdio> #include<cstdlib> #include& ...
- 【BZOJ 3175】 3175: [Tjoi2013]攻击装置(二分图匹配)
3175: [Tjoi2013]攻击装置 Description 给定一个01矩阵,其中你可以在0的位置放置攻击装置.每一个攻击装置(x,y)都可以按照“日”字攻击其周围的 8个位置(x-1,y-2) ...
- BZOJ3175 Tjoi2013 攻击装置(二分图匹配)
传送门 Description 给定一个01矩阵,其中你可以在0的位置放置攻击装置.每一个攻击装置(x,y)都可以按照"日"字攻击其周围的 8个位置(x-1,y-2),(x-2,y ...
- [TJOI2013] 攻击装置 - 二分图匹配
给定 \(N \times N\) 棋盘,某些格子是障碍,问可以放置的互不侵犯的马的个数 黑白染色后建立二分图,求最大独立集 = 总点数 - 最大匹配数 注意把反边也连上会WA掉(脑抽一发血) #in ...
- bzoj3175: [Tjoi2013]攻击装置&&4808: 马
终于知道为啥网络流这么受欢迎了. 其实就是构个图模板一下的事儿,比较好打是吧. 然后这题网络流黑白染色(其实感觉上匈牙利更加直接好想啊,但是实际上黑白染色给人感觉就是二分图) st连白而ed连黑,流量 ...
- BZOJ_3175_[Tjoi2013]攻击装置_二分图匹配
BZOJ_3175_[Tjoi2013]攻击装置_二分图匹配Description 给定一个01矩阵,其中你可以在0的位置放置攻击装置.每一个攻击装置(x,y)都可以按照“日”字攻击其周围的 8个位置 ...
- 【洛谷】4304:[TJOI2013]攻击装置【最大点独立集】【二分图】2172: [国家集训队]部落战争【二分图/网络流】【最小路径覆盖】
P4304 [TJOI2013]攻击装置 题目描述 给定一个01矩阵,其中你可以在0的位置放置攻击装置. 每一个攻击装置(x,y)都可以按照“日”字攻击其周围的8个位置(x-1,y-2),(x-2,y ...
随机推荐
- Android多线程—HandlerThread解析
一.HandlerThread作用 1.实现多线程:在工作线程之后执行任务(比如一些耗时任务) 2.异步通信.消息传递:实现工作线程与主线程(UI线程)之间的通信,即将工作线程的执行结果传递给主线程, ...
- https原理简析
[转]http://www.cnblogs.com/carsonzhu/p/5225778.html HTTPS的工作原理 HTTPS在传输数据之前需要客户端(浏览器)与服务端(网站)之间进行一次握手 ...
- c#静态构造函数 与 构造函数 你是否还记得?(转载)
构造函数这个概念,在我们刚开始学习编程语言的时候,就被老师一遍一遍的教着.亲,现在你还记得静态构造函数的适用场景吗?如果没有,那么我们一起来复习一下吧.静态构造函数是在构造函数方法前面添加了stati ...
- mysql的聚簇索引与非聚簇索引的简短总结
[原文]https://www.jianshu.com/p/72763d47aa1a 在mysql数据库中,myisam引擎和innodb引擎使用的索引类型不同,myisam对应的是非聚簇索引,而in ...
- Java 面试题 队列
Queue: 基本上,一个队列就是一个先入先出(FIFO)的数据结构 Queue接口与List.Set同一级别,都是继承了Collection接口.LinkedList实现了Deque接 口. Q ...
- Ionic App之国际化(2) json数组的处理
在Ionic App值国际化(1)中我们实现了对单个参数的多语言处理,下面开始如何进行数组的处理. 1.在我们的多语言文件中设置要访问的json数组,en.json和zh.json,此处就以en.js ...
- flask_admin 笔记七 扩展功能
高级功能 1,开启CSRF保护 要将CSRF保护添加到由ModelView实例生成的表单中,请通过指定form_base_class参数在ModelView子类中使用SecureForm类: from ...
- Authorize的Forms认证
页面请求步骤: 1.登录地址: http://localhost:4441/SysLogin/AdminLogin 2.登陆成功地址:http://localhost:4441/Frame/MainF ...
- React Native 教程:001 - 如何运行官方控件示例 App
原文发表于我的技术博客 本文主要讲解了如何运行 React Native 官方控件示例 App,包含了一些 React Native 的基础知识以及相关环境的配置. 原文发表于我的技术博客 React ...
- centos7.4下Jira6环境部署及破解操作记录(完整版)
废话不多说,以下记录了Centos7针对Jira6的安装,汉化,破解的操作过程,作为运维笔记留存. 0) 基础环境 192.168.10.212 Centos7.4 mysql 5.6 jdk 1.8 ...