『计算机视觉』Mask-RCNN_训练网络其三:训练Model
Github地址:Mask_RCNN
『计算机视觉』Mask-RCNN_论文学习
『计算机视觉』Mask-RCNN_项目文档翻译
『计算机视觉』Mask-RCNN_推断网络其一:总览
『计算机视觉』Mask-RCNN_推断网络其二:基于ReNet101的FPN共享网络
『计算机视觉』Mask-RCNN_推断网络其三:RPN锚框处理和Proposal生成
『计算机视觉』Mask-RCNN_推断网络其四:FPN和ROIAlign的耦合
『计算机视觉』Mask-RCNN_推断网络其五:目标检测结果精炼
『计算机视觉』Mask-RCNN_推断网络其六:Mask生成
『计算机视觉』Mask-RCNN_推断网络终篇:使用detect方法进行推断
『计算机视觉』Mask-RCNN_锚框生成
『计算机视觉』Mask-RCNN_训练网络其一:数据集与Dataset类
『计算机视觉』Mask-RCNN_训练网络其二:train网络结构&损失函数
『计算机视觉』Mask-RCNN_训练网络其三:训练Model
一、模型初始化
1、创建模型并载入预训练参数
准备了数据集后,我们开始构建model,training网络结构上一节已经介绍完了,现在我们看一看训练时如何调用training结构的网络。
如上所示,我们首先建立图结构(详见上节『计算机视觉』Mask-RCNN_训练网络其二:train网络结构),然后选择初始化参数方案
例子(train_shape.ipynb)中使用的是COCO预训练模型,如果想要"Finds the last checkpoint file of the last trained model in the
model directory",那么选择"last"选项。
载入参数方法如下,注意几个之前接触不多的操作,
- 载入h5文件使用模块为h5py
- keras model有属性.layers以list形式返回全部的层对象
keras.engine下的saving模块load_weights_from_hdf5_group_by_name按照名字对应,而load_weights_from_hdf5_group按照记录顺序对应
def load_weights(self, filepath, by_name=False, exclude=None):
"""Modified version of the corresponding Keras function with
the addition of multi-GPU support and the ability to exclude
some layers from loading.
exclude: list of layer names to exclude
"""
import h5py
# Conditional import to support versions of Keras before 2.2
# TODO: remove in about 6 months (end of 2018)
try:
from keras.engine import saving
except ImportError:
# Keras before 2.2 used the 'topology' namespace.
from keras.engine import topology as saving if exclude:
by_name = True if h5py is None:
raise ImportError('`load_weights` requires h5py.')
f = h5py.File(filepath, mode='r')
if 'layer_names' not in f.attrs and 'model_weights' in f:
f = f['model_weights'] # In multi-GPU training, we wrap the model. Get layers
# of the inner model because they have the weights.
keras_model = self.keras_model
layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")\
else keras_model.layers # Exclude some layers
if exclude:
layers = filter(lambda l: l.name not in exclude, layers) if by_name:
saving.load_weights_from_hdf5_group_by_name(f, layers)
else:
saving.load_weights_from_hdf5_group(f, layers)
if hasattr(f, 'close'):
f.close() # Update the log directory
self.set_log_dir(filepath)
2、从h5文件一窥load模式
keras model的层
对于layer对象我们有一下几点说明
layer.name:查询层对象的节点名称
layer.trainable:层对象是否可训练
对于TimeDistributed对象,其.layer方法返回对象才是我们要设定的层对象
载入模型并查看layers如下,
查看名称如下,名称即我们在build函数中为每个层设置的名称,和TensorFlow一样,参数载入依赖于此。
h5 文件记录
载入h5文件并查看,f.attrs记录了三个值,第一个为字符串list,后两个均为字符串,对于"layer_names"我们如下尝试,其记录了各个层的name字符串(h5记录的都是二进制形式,需要转码)
在keras.engine的saving方法中,可以看到后两个记录的解析,实际测试一个是keras的版本号,一个会返回b'tensorflow'
if 'keras_version' in f.attrs:
original_keras_version = f.attrs['keras_version'].decode('utf8')
else:
original_keras_version = '1'
if 'backend' in f.attrs:
original_backend = f.attrs['backend'].decode('utf8')
else:
original_backend = None
"layer_names"记录的字符串们可以视为h5文件索引,其索引对象为子h5对象,子h5对象有attrs:"weight_names",也是字符串list,可以索引子h5对象,其索引出的便是参数值,示意如下:
实际的载入参数时,keras API已经封装的很好了,不需要我们自己取对应h5中的名称和网络中的名称,然后更新参数值。交由saving.load_weights_from_hdf5_group_by_name(f, layers),输入f句柄,输入需要载入参数的层对象即可对应名字完成载入。
二、模型训练
本部不讲解网络结构,主要介绍的是训练步骤,网络结构介绍见:『计算机视觉』Mask-RCNN_训练网络其二:train网络结构
模型训练有两种模式,
Only the heads. Here we're freezing all the backbone layers and training only the randomly initialized layers (i.e. the ones that we didn't use pre-trained weights from MS COCO). To train only the head layers, pass
layers='heads'
to thetrain()
function.Fine-tune all layers. For this simple example it's not necessary, but we're including it to show the process. Simply pass
layers="all
to train all layers.
1、train方法文档
train方法声明如下
def train(self, train_dataset, val_dataset, learning_rate, epochs, layers,
augmentation=None, custom_callbacks=None, no_augmentation_sources=None)
文档说明如下
"""Train the model.
train_dataset, val_dataset: Training and validation Dataset objects.
learning_rate: The learning rate to train with
epochs: Number of training epochs. Note that previous training epochs
are considered to be done alreay, so this actually determines
the epochs to train in total rather than in this particaular
call.
layers: Allows selecting which layers to train. It can be:
- A regular expression to match layer names to train
- One of these predefined values:
heads: The RPN, classifier and mask heads of the network
all: All the layers
3+: Train Resnet stage 3 and up
4+: Train Resnet stage 4 and up
5+: Train Resnet stage 5 and up
augmentation: Optional. An imgaug (https://github.com/aleju/imgaug)
augmentation. For example, passing imgaug.augmenters.Fliplr(0.5)
flips images right/left 50% of the time. You can pass complex
augmentations as well. This augmentation applies 50% of the
time, and when it does it flips images right/left half the time
and adds a Gaussian blur with a random sigma in range 0 to 5. augmentation = imgaug.augmenters.Sometimes(0.5, [
imgaug.augmenters.Fliplr(0.5),
imgaug.augmenters.GaussianBlur(sigma=(0.0, 5.0))
])
custom_callbacks: Optional. Add custom callbacks to be called
with the keras fit_generator method. Must be list of type keras.callbacks.
no_augmentation_sources: Optional. List of sources to exclude for
augmentation. A source is string that identifies a dataset and is
defined in the Dataset class.
"""
2、模型准备&数据准备
首先对模型设置进行准备。
- 指定训练层时既可以输入层名层,也可以输入预定的字符串,输入预定字符串则其解析规则见下面开头几行。最终获取layers变量记录要训练层的名字(或者正则表达式)
- 然后准备数据,data_generator函数涉及预处理流程很繁琐(见model.py),可以自行查阅
- 生成文件保存目录
assert self.mode == "training", "Create model in training mode." # Pre-defined layer regular expressions
layer_regex = {
# all layers but the backbone
"heads": r"(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)",
# From a specific Resnet stage and up
"3+": r"(res3.*)|(bn3.*)|(res4.*)|(bn4.*)|(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)",
"4+": r"(res4.*)|(bn4.*)|(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)",
"5+": r"(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)",
# All layers
"all": ".*",
}
if layers in layer_regex.keys():
layers = layer_regex[layers] # Data generators
train_generator = data_generator(train_dataset, self.config, shuffle=True,
augmentation=augmentation,
batch_size=self.config.BATCH_SIZE,
no_augmentation_sources=no_augmentation_sources)
val_generator = data_generator(val_dataset, self.config, shuffle=True,
batch_size=self.config.BATCH_SIZE) # Create log_dir if it does not exist
if not os.path.exists(self.log_dir):
os.makedirs(self.log_dir)
3、model处理
这里主要的步骤就是
- 将前一步的可训练层名称传入函数self.set_trainable(layers),设置对应层对象的trainable属性为True
- self.compile方法设定优化器,综合各个loss给出整体优化对象,最后编译model
# Callbacks
callbacks = [
keras.callbacks.TensorBoard(log_dir=self.log_dir,
histogram_freq=0, write_graph=True, write_images=False),
keras.callbacks.ModelCheckpoint(self.checkpoint_path,
verbose=0, save_weights_only=True),
] # Add custom callbacks to the list
if custom_callbacks:
callbacks += custom_callbacks # Train
log("\nStarting at epoch {}. LR={}\n".format(self.epoch, learning_rate))
log("Checkpoint Path: {}".format(self.checkpoint_path))
self.set_trainable(layers)
self.compile(learning_rate, self.config.LEARNING_MOMENTUM) # Work-around for Windows: Keras fails on Windows when using
# multiprocessing workers. See discussion here:
# https://github.com/matterport/Mask_RCNN/issues/13#issuecomment-353124009
if os.name is 'nt':
workers = 0
else:
workers = multiprocessing.cpu_count() # 单机默认为0
self.compile方法
def compile(self, learning_rate, momentum):
"""Gets the model ready for training. Adds losses, regularization, and
metrics. Then calls the Keras compile() function.
"""
# Optimizer object
optimizer = keras.optimizers.SGD(
lr=learning_rate, momentum=momentum,
clipnorm=self.config.GRADIENT_CLIP_NORM)
# Add Losses
# First, clear previously set losses to avoid duplication
self.keras_model._losses = []
self.keras_model._per_input_losses = {}
loss_names = [
"rpn_class_loss", "rpn_bbox_loss",
"mrcnn_class_loss", "mrcnn_bbox_loss", "mrcnn_mask_loss"]
for name in loss_names:
layer = self.keras_model.get_layer(name)
if layer.output in self.keras_model.losses:
continue
loss = (
tf.reduce_mean(layer.output, keep_dims=True)
* self.config.LOSS_WEIGHTS.get(name, 1.))
self.keras_model.add_loss(loss) # Add L2 Regularization
# Skip gamma and beta weights of batch normalization layers.
reg_losses = [
keras.regularizers.l2(self.config.WEIGHT_DECAY)(w) / tf.cast(tf.size(w), tf.float32)
for w in self.keras_model.trainable_weights
if 'gamma' not in w.name and 'beta' not in w.name]
self.keras_model.add_loss(tf.add_n(reg_losses)) # Compile
self.keras_model.compile(
optimizer=optimizer,
loss=[None] * len(self.keras_model.outputs)) # Add metrics for losses
for name in loss_names:
if name in self.keras_model.metrics_names:
continue
layer = self.keras_model.get_layer(name)
self.keras_model.metrics_names.append(name)
loss = (
tf.reduce_mean(layer.output, keepdims=True)
* self.config.LOSS_WEIGHTS.get(name, 1.))
self.keras_model.metrics_tensors.append(loss)
self.set_trainable方法
def set_trainable(self, layer_regex, keras_model=None, indent=0, verbose=1):
"""Sets model layers as trainable if their names match
the given regular expression.
"""
# Print message on the first call (but not on recursive calls)
if verbose > 0 and keras_model is None:
log("Selecting layers to train") keras_model = keras_model or self.keras_model # In multi-GPU training, we wrap the model. Get layers
# of the inner model because they have the weights.
layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")\
else keras_model.layers for layer in layers:
# Is the layer a model?
if layer.__class__.__name__ == 'Model': # 不同层隶属不同的class,但Model class是单一的
print("In model: ", layer.name)
self.set_trainable(
layer_regex, keras_model=layer, indent=indent + 4)
continue if not layer.weights:
continue
# Is it trainable?
trainable = bool(re.fullmatch(layer_regex, layer.name))
# Update layer. If layer is a container, update inner layer.
if layer.__class__.__name__ == 'TimeDistributed':
layer.layer.trainable = trainable
else:
layer.trainable = trainable
# Print trainable layer names
if trainable and verbose > 0:
log("{}{:20} ({})".format(" " * indent, layer.name,
layer.__class__.__name__))
4、训练model
最简单的一步了,调用keras接口训练即可,上一步定义的callbacks也是在这里传入
self.keras_model.fit_generator(
train_generator,
initial_epoch=self.epoch,
epochs=epochs,
steps_per_epoch=self.config.STEPS_PER_EPOCH,
callbacks=callbacks,
validation_data=val_generator,
validation_steps=self.config.VALIDATION_STEPS,
max_queue_size=100,
workers=workers,
use_multiprocessing=True,
)
self.epoch = max(self.epoch, epochs)
至此,train方法便自动的开始了模型的训练工作。
『计算机视觉』Mask-RCNN_训练网络其三:训练Model的更多相关文章
- 『计算机视觉』经典RCNN_其二:Faster-RCNN
项目源码 一.Faster-RCNN简介 『cs231n』Faster_RCNN 『计算机视觉』Faster-RCNN学习_其一:目标检测及RCNN谱系 一篇讲的非常明白的文章:一文读懂Faster ...
- 『计算机视觉』经典RCNN_其一:从RCNN到Faster-RCNN
RCNN介绍 目标检测-RCNN系列 一文读懂Faster RCNN 一.目标检测 1.两个任务 目标检测可以拆分成两个任务:识别和定位 图像识别(classification)输入:图片输出:物体的 ...
- 『计算机视觉』Mask-RCNN_推断网络其二:基于ReNet101的FPN共享网络暨TensorFlow和Keras交互简介
零.参考资料 有关FPN的介绍见『计算机视觉』FPN特征金字塔网络. 网络构架部分代码见Mask_RCNN/mrcnn/model.py中class MaskRCNN的build方法的"in ...
- 『计算机视觉』Mask-RCNN_推断网络其四:FPN和ROIAlign的耦合
一.模块概述 上节的最后,我们进行了如下操作获取了有限的proposal, # [IMAGES_PER_GPU, num_rois, (y1, x1, y2, x2)] # IMAGES_PER_GP ...
- 『计算机视觉』Mask-RCNN
一.Mask-RCNN流程 Mask R-CNN是一个实例分割(Instance segmentation)算法,通过增加不同的分支,可以完成目标分类.目标检测.语义分割.实例分割.人体姿势识别等多种 ...
- 『计算机视觉』Mask-RCNN_训练网络其二:train网络结构&损失函数
Github地址:Mask_RCNN 『计算机视觉』Mask-RCNN_论文学习 『计算机视觉』Mask-RCNN_项目文档翻译 『计算机视觉』Mask-RCNN_推断网络其一:总览 『计算机视觉』M ...
- 『计算机视觉』Mask-RCNN_训练网络其一:数据集与Dataset类
Github地址:Mask_RCNN 『计算机视觉』Mask-RCNN_论文学习 『计算机视觉』Mask-RCNN_项目文档翻译 『计算机视觉』Mask-RCNN_推断网络其一:总览 『计算机视觉』M ...
- 『计算机视觉』Mask-RCNN_推断网络其六:Mask生成
一.Mask生成概览 上一节的末尾,我们已经获取了待检测图片的分类回归信息,我们将回归信息(即待检测目标的边框信息)单独提取出来,结合金字塔特征mrcnn_feature_maps,进行Mask生成工 ...
- 『计算机视觉』Mask-RCNN_推断网络其三:RPN锚框处理和Proposal生成
一.RPN锚框信息生成 上文的最后,我们生成了用于计算锚框信息的特征(源代码在inference模式中不进行锚框生成,而是外部生成好feed进网络,training模式下在向前传播时直接生成锚框,不过 ...
随机推荐
- Pycharm调试:进入调用函数后返回
在菜单栏的view中勾选toolbar,然后点击工具栏中左箭头返回到调用函数处.
- 图像分类(一)GoogLenet Inception_V1:Going deeper with convolutions
论文地址 在该论文中作者提出了一种被称为Inception Network的深度卷积神经网络,它由若干个Inception modules堆叠而成.Inception的主要特点是它能提高网络中计算资源 ...
- 类的继承和C3算法
在Python的新式类中,方法解析顺序并非是广度优先的算法,而是采用C3算法,只是在某些情况下,C3算法的结果恰巧符合广度优先算法的结果. 可以通过代码来验证下: class NewStyleClas ...
- vue:不同环境配置不同打包命令
修改prod.env.js 'use strict'const target = process.env.npm_lifecycle_event;if (target == 'build') { // ...
- hive sql执行的job在map时报java.lang.OutOfMemoryError的错误
较为详细且重要的一段报错信息是org.apache.hadoop.mapred.YarnChild: Error running child : java.lang.OutOfMemoryError: ...
- Poj3624 Charm Bracelet (01背包)
题目链接:http://poj.org/problem?id=3624 Description Bessie has gone to the mall's jewelry store and spie ...
- 51Nod 算法马拉松12 移数博弈
点进去发现并不是博弈QAQ 一开始考虑单调队列什么乱七八糟的发现根本做不出来 (没错我一直在想枚举最大值求次大值QAQ 不妨换个思路: 我们考虑枚举次大值求最大值 设当前为now, 设now之前第一个 ...
- Docker Overlay 工作原理
Docker 原生Overlay 网络工作流程 如图:有两个Container 独立的容器节点.他们通过Overlay网路进行通信. 网卡设备 Container eth0:eth0它是Overlay ...
- dataguard从库数据库丢失恢复例子(模拟丢失数据文件)
准备工作,使用如下脚本进行数据库的全备份[oracle@localhost ~]$ more rman_backup.sh #!/bin/sh RMAN_OUTPUT_LOG=/home/oracle ...
- UI自动化(十)selenium定位
浏览器操作 1 2 3 4 5 6 7 8 # 刷新 driver.refresh() # 前进 driver.forward() # 后退 driver.back() 获取标签元素 ...