【BZOJ3529】数表
数表
Description
有一张 n*m 的数表,其第i行第j列(1<=i<=n,1<=j<=m)的数值为能同时整除 i和j的所有自然数之和。给定a,计算数表中不大于a的数之和。
Input
输入包含多组数据。
输入的第一行一个整数Q,表示测试点内的数据组数;
接下来Q行,每行三个整数n,m,a(|a|<=10^9 )描述一组数据。
Output
对每组数据,输出一行一个整数,表示答案模2^31的值。
Sample Input
2
4 4 3
10 10 5
Sample Output
20
148
Hint
不妨设\(n<m\)。
同时整除\(i,j\)的自然数之和就是\(gcd(i,j)\)的约数之和。我们设\(f(i)=\sum_{d|i}d\)。
则:
=\sum_{g=1}^{n}f(g)\sum_{i=1}^{\lfloor \frac{n}{g} \rfloor}\sum_{j=1}^{\lfloor \frac{m}{g} \rfloor}\sum_{d|i,d|j}\mu(d)
\]
又来套路一波:设\(T=gd\),\(\displaystyle ans=\sum_{T=1}^{n}\sum_{d|T}\mu(d)f(\frac{n}{d})\lfloor \frac{n}{T} \rfloor\lfloor \frac{m}{T} \rfloor\)。
然后又了a的限制后,我们就将询问和\(f\)都离线下来排序,加入树状数组里面。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<complex>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<ctime>
#include<queue>
#include<iomanip>
#define ll long long
#define N 100005
#define int ll
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
int Q;
int pri[N];
bool vis[N];
ll sum[N];
int mu[N];
struct node {
int id;
ll sum;
bool operator <(const node &a)const {
return sum<a.sum;
}
}st[N];
int cnt;
struct query {
int n,m,id;
ll a;
bool operator <(const query &x)const {return a<x.a;}
}q[20005];
void pre(int n) {
mu[1]=1;
for(int i=2;i<=n;i++) {
if(!vis[i]) {
pri[++pri[0]]=i;
mu[i]=-1;
}
for(int j=1;j<=pri[0]&&i*pri[j]<=n;j++) {
vis[i*pri[j]]=1;
if(i%pri[j]==0) {
mu[i*pri[j]]=0;
break;
}
mu[i*pri[j]]=-mu[i];
}
}
for(int i=1;i<=n;i++) {
for(int j=i;j<=n;j+=i) {
sum[j]+=i;
}
}
cnt=n;
for(int i=1;i<=n;i++) st[i]=(node) {i,sum[i]};
}
ll tem[N];
int low(int i) {return i&(-i);}
const ll mod=(1ll<<31);
void add(int v,ll f) {for(int i=v;i<=100000;i+=low(i)) (tem[i]+=f)%=mod;}
void update(int v) {
for(int i=v;i<=100000;i+=v) {
if(!mu[i/v]) continue ;
add(i,(sum[v]*mu[i/v]%mod+mod)%mod);
}
}
ll Ask(int v) {
ll ans=0;
for(int i=v;i;i-=low(i)) (ans+=tem[i])%=mod;
return ans;
}
ll Ask(int l,int r) {return (Ask(r)-Ask(l-1)+mod)%mod;}
ll ans[20005];
int now;
ll solve(int n,int m) {
if(n>m) swap(n,m);
int last;
ll ans=0;
for(int i=1;i<=n;i=last+1) {
last=min(n/(n/i),m/(m/i));
(ans+=1ll*(n/i)*(m/i)%mod*Ask(i,last)%mod)%=mod;
}
return ans;
}
signed main() {
pre(100000);
sort(st+1,st+1+cnt);
Q=Get();
for(int i=1;i<=Q;i++) {
q[i].n=Get(),q[i].m=Get(),q[i].a=Get();
q[i].id=i;
}
sort(q+1,q+1+Q);
int tag=1;
for(int i=1;i<=Q;i++) {
while(tag<=cnt&&st[tag].sum<=q[i].a) {
update(st[tag].id);
tag++;
}
now=i;
ans[q[i].id]=solve(q[i].n,q[i].m);
}
for(int i=1;i<=Q;i++) cout<<ans[i]<<"\n";
return 0;
}
【BZOJ3529】数表的更多相关文章
- [BZOJ3529]数表
假设$n\leq m$,我们先不考虑$\leq a$的限制 $\sum\limits_{i=1}^n\sum\limits_{j=1}^m\sigma((i,j))=\sum\limits_{T=1} ...
- 【BZOJ3529】数表(莫比乌斯反演,树状数组)
[BZOJ3529]数表(莫比乌斯反演,树状数组) 题解 首先不管\(A\)的范围的限制 要求的东西是 \[\sum_{i=1}^n\sum_{j=1}^m\sigma(gcd(i,j))\] 其中\ ...
- 【BZOJ3529】[Sdoi2014]数表 莫比乌斯反演+树状数组
[BZOJ3529][Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和 ...
- [bzoj3529][Sdoi2014]数表_树状数组_莫比乌斯反演
数表 bzoj-3529 Sdoi-2014 题目大意:n*m的数表,第i行第j列的数是同时整除i和j的所有自然数之和.给定a,求数表中所有不超过a的和. 注释:$1\le n,m \le 10^5$ ...
- 【BZOJ3529】【莫比乌斯反演 + 树状数组】[Sdoi2014]数表
Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为 能同时整除i和j的所有自然数之和.给定a,计算数表中不大于 ...
- 【BZOJ3529】【SDOI2014】 数表
Time Limit: 10 Sec Memory Limit: 512 MB Description 有一张\(n×m\)的数表,其第i行第j列(\(,1 \le i \leq n,1 \le ...
- 【BZOJ3529】【SDOI2014】数表
Time Limit: 1000 ms Memory Limit: 512 MB Description 有一张n×m的数表,其第i行第j列 (1≤i≤n,1≤j≤m)的数值为能同时整除i和j的所有自 ...
- bzoj千题计划205:bzoj3529: [Sdoi2014]数表
http://www.lydsy.com/JudgeOnline/problem.php?id=3529 有一张n*m的数表,其第i行第j列(1 < =i < =n,1 < =j & ...
- 【SDOI2014】【BZOJ3529】数表
Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼.1 < =j < =m)的数值为 能同一时候整除i和j的全部自然数之和.给定a,计算数表中不 ...
随机推荐
- JS判断是否是数组的四种做法
一.前言 如何判断一个对象或一个值是否是一个数组,在面试或工作中我们常常会遇到这个问题,既然出现频率高,想着还是做个整理,那么本文主要基于几种判断方式,以及方式判断的原理,是否存在问题展开讨论. 二. ...
- 主从热备+负载均衡(LVS + keepalived)
前言 淘宝架构师李智慧大牛的书籍<大型网站技术架构>以及旭龙兄的博客 --->[大型网站技术实践]初级篇:借助LVS+Keepalived实现负载均衡. 从上参考而得来本文,本文旨 ...
- 使用gitlab, jenkins搭建CI(持续集成)系统(3) -- 根据不同触发条件执行不同的构建任务
前面在jenkins中安装的gitlab hook支持不同的参数,具体可以参考gitlab hook文档https://github.com/jenkinsci/gitlab-hook-plugin# ...
- 基于vue框架手写一个notify插件,实现通知功能
简单编写一个vue插件,当点击时触发notify插件,dom中出现相应内容并且在相应时间之后清除,我们可以在根组件中设定通知内容和延迟消失时间. 1. 基础知识 我们首先初始化一个vue项目,删除不需 ...
- 深入浅出 JVM GC(2)
# 前言 在 深入浅出 JVM GC(1) 中,限于上篇文章的篇幅,我们留下了一个问题 : 如何回收? 这篇文章将重点讲述这个问题. 在上篇文章中,我们也列出了一些大纲,今天我们就按照那个大纲来逐个讲 ...
- CentOS7日期时间设置方法以及时间基本概念介绍
在CentOS 6版本,时间设置有date.hwclock命令,从CentOS 7开始,使用了一个新的命令timedatectl. 一.基本概念 1.1 GMT.UTC.CST.DST 时间 (1) ...
- Java坦克大战(一)
接下来的几篇博客,想记录一下通过学习坦克大战项目来循序渐进的学习Java基础.主要是为了巩固基础知识,当然学习编程重要的还是多敲,问题通常是在敲代码的过程中发现的,积累也是在敲代码中寻求的经验.这个坦 ...
- javascript基于对象的弹出框封装
先睹为快,移动端:戳这里,打开页面后点击投票查看效果.PC端测试直接切换body的overflow属性:hidden和auto一样可以,比下面相对简化,又有人说这样偶尔不行..如果你知道优缺点欢迎给出 ...
- 慕学在线网0.2_users表设计(1)
1.Django App设计: users-用户管理(任何web中,users表都是第一个被设计的) course-课程管理 organization-机构和教师管理 operation-用户操作管理 ...
- TERADATA数据库操作
1.创建一个数据库的命令举例: ,spool; 注释:该命令创建了一个测试数据库testbase,其永久表空间为200mb,spool空间不能超过100mb.在teradata数据库系统的缺省方式下, ...