BSOJ 2414 -- 【JSOI2011】分特产
Description
JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们。
JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任何一个同学因为没有拿到特产而感到失落,所以每个同学都必须至少分得一个特产。
例如,JYY 带来了2 袋麻花和1 袋包子,分给A 和B 两位同学,那么共有4 种不同的
分配方法:
A:麻花,B:麻花、包子
A:麻花、麻花,B:包子
A:包子,B:麻花、麻花
A:麻花、包子,B:麻花
Input
输入数据第一行是同学的数量N 和特产的数量M。
第二行包含M 个整数,表示每一种特产的数量。
N, M 不超过1000,每一种特产的数量不超过1000.
Output
输出一行,不同分配方案的总数。由于输出结果可能非常巨大,你只需要输出最终结果
MOD 1,000,000,007 的数值就可以了。
Sample Input
5 4 1 3 3 5
Sample Output
384835
首先,如果没有“每个人至少拿一个”的限制,那么答案就用经典的插板法解决。。
然后我们肯定要容斥一下。还是老套路,我们要-{至少有一个人没有特产的方案}+{至少有两个人没有特产的方案}-{至少有三个人没有特产的方案}...
考虑求至少k个人没拿到特产的方案。首先我们要枚举哪k个人没拿到特产,然后再将所有特产分给剩下的n-k个人。所以方案数就是。
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#include<vector>
#include<ctime>
#define ll long long
#define mod 1000000007ll
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
int n,m;
int w[1005];
ll f[1005],g[1005];
ll c[2005][2005],s,ans,tot[1005];
int main() {
n=Get(),m=Get();
c[0][0]=1;
for(int i=1;i<=2000;i++)
for(int j=0;j<=i;j++)
c[i][j]=(!j||i==j)?1:(c[i-1][j-1]+c[i-1][j])%mod;
for(int i=1;i<=m;i++) w[i]=Get();
for(int i=1;i<=n;i++) {
tot[i]=1;
for(int j=1;j<=m;j++) {
tot[i]=tot[i]*c[w[j]+i-1][i-1]%mod;
}
}
int flag=1;
for(int i=n;i>=1;i--) {
ans=(ans+flag*c[n][i]*tot[i]%mod+mod)%mod;
flag*=-1;
}
cout<<ans;
return 0;
}
BSOJ 2414 -- 【JSOI2011】分特产的更多相关文章
- BZOJ 4710: [Jsoi2011]分特产 [容斥原理]
4710: [Jsoi2011]分特产 题意:m种物品分给n个同学,每个同学至少有一个物品,求方案数 对于每种物品是独立的,就是分成n组可以为空,然后可以用乘法原理合起来 容斥容斥 \[ 每个同学至少 ...
- bzoj4710: [Jsoi2011]分特产 组合+容斥
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 289 Solved: 198[Submit][Status] ...
- bzoj4710 [Jsoi2011]分特产(容斥)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 814 Solved: 527[Submit][Status] ...
- 4710: [Jsoi2011]分特产
4710: [Jsoi2011]分特产 链接 分析: 容斥原理+隔板法. 代码: #include<cstdio> #include<algorithm> #include&l ...
- 【BZOJ 4710】 4710: [Jsoi2011]分特产 (容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 99 Solved: 65 Description JYY 带 ...
- [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 395 Solved: 262[Submit][Status] ...
- BZOJ 4710 [Jsoi2011]分特产 解题报告
4710 [Jsoi2011]分特产 题意 给定\(n\)个集合,每个集合有相同的\(a_i\)个元素,不同的集合的元素不同.将所有的元素分给\(m\)个不同位置,要求每个位置至少有一个元素,求分配方 ...
- 【BZOJ4710】[Jsoi2011]分特产 组合数+容斥
[BZOJ4710][Jsoi2011]分特产 Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同 ...
- 题解-JSOI2011 分特产
题面 JSOI2011 分特产 有 \(n\) 个不同的盒子和 \(m\) 种不同的球,第 \(i\) 种球有 \(a_i\) 个,用光所有球,求使每个盒子不空的方案数. 数据范围:\(1\le n, ...
- ●BZOJ 4710 [Jsoi2011]分特产
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4710 题解: 容斥,组合先看看这个方案数的计算:把 M 个相同的东西分给 N 个人,每个人可 ...
随机推荐
- httpd配置文件httpd.conf规则说明和一些基本指令
apache httpd系列文章:http://www.cnblogs.com/f-ck-need-u/p/7576137.html 本文主要介绍的是httpd的配置文件,包括一些最基本的指令.配置规 ...
- [翻译]EntityFramework Core 2.2 发布
原文来源 TechViews 今天我们将推出EF Core 2.2的最终版本,以及ASP.NET Core 2.2和.NET Core 2.2 .这是我们的开源和跨平台对象数据库映射技术的最新版本. ...
- C# 单例模式和窗体的单例打开方法
第一种最简单,但没有考虑线程安全,在多线程时可能会出问题,不过俺从没看过出错的现象,表鄙视我…… public class Singleton{ private static Singleton ...
- 设计模式之备忘录模式(Memento )
当我们在实际应用中需要提供撤销机制,当一个对象可能需要再后续操作中恢复其内部状态时,就需要使用备忘录模式.其本质就是对象的序列化和反序列化的过程,支持回滚操作. 作用 在不破坏封装性的前提下,捕获一个 ...
- canvas-2arcTo.html
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Openlayer3之空间参考扩展
Openlayers默认了两种空间参考,一个是EPSG4326,一个是EPSG3857,其它的空间参考需要进行扩展才能使用.所以我们初始化时进行了如下操作: 1.将配置数据库中所有的空间参考读取出来, ...
- Oracle 常用的查询操作
–1. 查询系统所有对象select owner, object_name, object_type, created, last_ddl_time, timestamp, statusfrom db ...
- iOS开发NSDate、NSString、时间戳之间的转化
//将UTCDate(世界标准时间)转化为当地时区的标准Date(钟表显示的时间) //NSDate *date = [NSDate date]; 2018-03-27 06:54:41 +0000 ...
- Spark性能优化(基于Spark 1.x)
Task优化: 1.慢任务的性能优化:可以考虑减少每个Partition处理的数据量,同时建议开启spark.speculation(慢任务推导,当检测的慢任务时,会同步开启相同的新任务,谁先完 ...
- 03-openldap服务端安装配置
openldap服务端安装配置 阅读目录 基础环境准备 安装openldap服务端 初始化openldap配置 启动OpenLDAP 重新生成配置文件信息 规划OpenLDAP目录树组织架构 使用GU ...