import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms # Device configuration
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # Hyper parameters
num_epochs = 5
num_classes = 10
batch_size = 100
learning_rate = 0.001 # MNIST dataset
train_dataset = torchvision.datasets.MNIST(root='../../data/',
train=True,
transform=transforms.ToTensor(),
download=True) test_dataset = torchvision.datasets.MNIST(root='../../data/',
train=False,
transform=transforms.ToTensor()) # Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False) # Convolutional neural network (two convolutional layers)
class ConvNet(nn.Module):
def __init__(self, input_channel, num_classes):
super(ConvNet, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(input_channel, 16, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2)
) # 28*28*1 -> 14*14*16
self.layer2 = nn.Sequential(
nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2)
) # 14*14*16 -> 7*7*32
self.fc = nn.Linear(7*7*32, num_classes) def forward(self, input):
out = self.layer1(input)
out = self.layer2(out)
out = out.reshape(out.size(0), -1)
out = self.fc(out)
return out model = ConvNet(1, num_classes).to(device) # Construct Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # Train the model
model.train()
total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device) # Forward pass
outputs = model(images)
loss = criterion(outputs, labels) # Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step() if (i+1) % 100 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, total_step, loss.item())) # Test the model
model.eval() # eval mode (batchnorm uses moving mean/variance instead of mini-batch mean/variance)
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item() print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total)) # Save the model checkpoint
torch.save(model.state_dict(), 'model.ckpt')
# ---------------------------------------------------------------------------- #
# An implementation of https://arxiv.org/pdf/1512.03385.pdf #
# See section 4.2 for the model architecture on CIFAR-10 #
# Some part of the code was referenced from below #
# https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py #
# ---------------------------------------------------------------------------- # import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms # Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Hyper-parameters
num_epochs = 80
learning_rate = 0.001 # Image preprocessing modules
transform = transforms.Compose([
transforms.Pad(4),
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32),
transforms.ToTensor()]) # CIFAR-10 dataset
train_dataset = torchvision.datasets.CIFAR10(root='../../data/',
train=True,
transform=transform,
download=True) test_dataset = torchvision.datasets.CIFAR10(root='../../data/',
train=False,
transform=transforms.ToTensor()) # Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=100,
shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=100,
shuffle=False) # 3x3 convolution
def conv3x3(in_channels, out_channels, stride=1):
return nn.Conv2d(in_channels, out_channels, kernel_size=3,
stride=stride, padding=1, bias=False) # Residual block
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(ResidualBlock, self).__init__()
self.conv1 = conv3x3(in_channels, out_channels, stride)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(out_channels, out_channels)
self.bn2 = nn.BatchNorm2d(out_channels)
self.downsample = downsample def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out # ResNet
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=10):
super(ResNet, self).__init__()
self.in_channels = 16
self.conv = conv3x3(3, 16)
self.bn = nn.BatchNorm2d(16)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self.make_layer(block, 16, layers[0])
self.layer2 = self.make_layer(block, 32, layers[0], 2)
self.layer3 = self.make_layer(block, 64, layers[1], 2)
self.avg_pool = nn.AvgPool2d(8)
self.fc = nn.Linear(64, num_classes) def make_layer(self, block, out_channels, blocks, stride=1):
downsample = None
if (stride != 1) or (self.in_channels != out_channels):
downsample = nn.Sequential(
conv3x3(self.in_channels, out_channels, stride=stride),
nn.BatchNorm2d(out_channels))
layers = []
layers.append(block(self.in_channels, out_channels, stride, downsample))
self.in_channels = out_channels
for i in range(1, blocks):
layers.append(block(out_channels, out_channels))
return nn.Sequential(*layers) def forward(self, x):
out = self.conv(x)
out = self.bn(out)
out = self.relu(out)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.avg_pool(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out model = ResNet(ResidualBlock, [2, 2, 2, 2]).to(device) # Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # For updating learning rate
def update_lr(optimizer, lr):
for param_group in optimizer.param_groups:
param_group['lr'] = lr # Train the model
total_step = len(train_loader)
curr_lr = learning_rate
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device) # Forward pass
outputs = model(images)
loss = criterion(outputs, labels) # Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step() if (i+1) % 100 == 0:
print ("Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}"
.format(epoch+1, num_epochs, i+1, total_step, loss.item())) # Decay learning rate
if (epoch+1) % 20 == 0:
curr_lr /= 3
update_lr(optimizer, curr_lr) # Test the model
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item() print('Accuracy of the model on the test images: {} %'.format(100 * correct / total)) # Save the model checkpoint
torch.save(model.state_dict(), 'resnet.ckpt')
# from torchsummary import summary
# summary(model, (3, 32, 32)) # https://github.com/lanpa/tensorboardX
# from tensorboardX import SummaryWriter
# dummy_input = torch.rand(1, 3, 32, 32).to(device)
# with SummaryWriter(comment='residual') as w:
# w.add_graph(model, (dummy_input, ))
 
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 16, 32, 32] 432
BatchNorm2d-2 [-1, 16, 32, 32] 32
ReLU-3 [-1, 16, 32, 32] 0
Conv2d-4 [-1, 16, 32, 32] 2,304
BatchNorm2d-5 [-1, 16, 32, 32] 32
ReLU-6 [-1, 16, 32, 32] 0
Conv2d-7 [-1, 16, 32, 32] 2,304
BatchNorm2d-8 [-1, 16, 32, 32] 32
ReLU-9 [-1, 16, 32, 32] 0
ResidualBlock-10 [-1, 16, 32, 32] 0
Conv2d-11 [-1, 16, 32, 32] 2,304
BatchNorm2d-12 [-1, 16, 32, 32] 32
ReLU-13 [-1, 16, 32, 32] 0
Conv2d-14 [-1, 16, 32, 32] 2,304
BatchNorm2d-15 [-1, 16, 32, 32] 32
ReLU-16 [-1, 16, 32, 32] 0
ResidualBlock-17 [-1, 16, 32, 32] 0
Conv2d-18 [-1, 32, 16, 16] 4,608
BatchNorm2d-19 [-1, 32, 16, 16] 64
ReLU-20 [-1, 32, 16, 16] 0
Conv2d-21 [-1, 32, 16, 16] 9,216
BatchNorm2d-22 [-1, 32, 16, 16] 64
Conv2d-23 [-1, 32, 16, 16] 4,608
BatchNorm2d-24 [-1, 32, 16, 16] 64
ReLU-25 [-1, 32, 16, 16] 0
ResidualBlock-26 [-1, 32, 16, 16] 0
Conv2d-27 [-1, 32, 16, 16] 9,216
BatchNorm2d-28 [-1, 32, 16, 16] 64
ReLU-29 [-1, 32, 16, 16] 0
Conv2d-30 [-1, 32, 16, 16] 9,216
BatchNorm2d-31 [-1, 32, 16, 16] 64
ReLU-32 [-1, 32, 16, 16] 0
ResidualBlock-33 [-1, 32, 16, 16] 0
Conv2d-34 [-1, 64, 8, 8] 18,432
BatchNorm2d-35 [-1, 64, 8, 8] 128
ReLU-36 [-1, 64, 8, 8] 0
Conv2d-37 [-1, 64, 8, 8] 36,864
BatchNorm2d-38 [-1, 64, 8, 8] 128
Conv2d-39 [-1, 64, 8, 8] 18,432
BatchNorm2d-40 [-1, 64, 8, 8] 128
ReLU-41 [-1, 64, 8, 8] 0
ResidualBlock-42 [-1, 64, 8, 8] 0
Conv2d-43 [-1, 64, 8, 8] 36,864
BatchNorm2d-44 [-1, 64, 8, 8] 128
ReLU-45 [-1, 64, 8, 8] 0
Conv2d-46 [-1, 64, 8, 8] 36,864
BatchNorm2d-47 [-1, 64, 8, 8] 128
ReLU-48 [-1, 64, 8, 8] 0
ResidualBlock-49 [-1, 64, 8, 8] 0
AvgPool2d-50 [-1, 64, 1, 1] 0
Linear-51 [-1, 10] 650
================================================================
Total params: 195,738
Trainable params: 195,738
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 3.63
Params size (MB): 0.75
Estimated Total Size (MB): 4.38
----------------------------------------------------------------
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms # Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Hyper-parameters
sequence_length = 28
input_size = 28
hidden_size = 128
num_layers = 2
num_classes = 10
batch_size = 100
num_epochs = 2
learning_rate = 0.01 # MNIST dataset
train_dataset = torchvision.datasets.MNIST(root='../../data/',
train=True,
transform=transforms.ToTensor(),
download=True) test_dataset = torchvision.datasets.MNIST(root='../../data/',
train=False,
transform=transforms.ToTensor()) # Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False) # Recurrent neural network (many-to-one)
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x):
# Set initial hidden and cell states
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device) # Forward propagate LSTM
out, _ = self.lstm(x, (h0, c0)) # out: tensor of shape (batch_size, seq_length, hidden_size) # Decode the hidden state of the last time step
out = self.fc(out[:, -1, :])
return out model = RNN(input_size, hidden_size, num_layers, num_classes).to(device) # Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.reshape(-1, sequence_length, input_size).to(device)
labels = labels.to(device) # Forward pass
outputs = model(images)
loss = criterion(outputs, labels) # Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step() if (i+1) % 100 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, total_step, loss.item())) # Test the model
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.reshape(-1, sequence_length, input_size).to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item() print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total)) # Save the model checkpoint
torch.save(model.state_dict(), 'model.ckpt')
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms # Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Hyper-parameters
sequence_length = 28
input_size = 28
hidden_size = 128
num_layers = 2
num_classes = 10
batch_size = 100
num_epochs = 2
learning_rate = 0.003 # MNIST dataset
train_dataset = torchvision.datasets.MNIST(root='../../data/',
train=True,
transform=transforms.ToTensor(),
download=True) test_dataset = torchvision.datasets.MNIST(root='../../data/',
train=False,
transform=transforms.ToTensor()) # Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False) # Bidirectional recurrent neural network (many-to-one)
class BiRNN(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes):
super(BiRNN, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True)
self.fc = nn.Linear(hidden_size*2, num_classes) # 2 for bidirection def forward(self, x):
# Set initial states
h0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device) # 2 for bidirection
c0 = torch.zeros(self.num_layers*2, x.size(0), self.hidden_size).to(device) # Forward propagate LSTM
out, _ = self.lstm(x, (h0, c0)) # out: tensor of shape (batch_size, seq_length, hidden_size*2) # Decode the hidden state of the last time step
out = self.fc(out[:, -1, :])
return out model = BiRNN(input_size, hidden_size, num_layers, num_classes).to(device) # Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.reshape(-1, sequence_length, input_size).to(device)
labels = labels.to(device) # Forward pass
outputs = model(images)
loss = criterion(outputs, labels) # Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step() if (i+1) % 100 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, total_step, loss.item())) # Test the model
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.reshape(-1, sequence_length, input_size).to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item() print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total)) # Save the model checkpoint
torch.save(model.state_dict(), 'model.ckpt')
# Some part of the code was referenced from below.
# https://github.com/pytorch/examples/tree/master/word_language_model
import torch
import torch.nn as nn
import numpy as np
from torch.nn.utils import clip_grad_norm
from data_utils import Dictionary, Corpus # Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Hyper-parameters
embed_size = 128
hidden_size = 1024
num_layers = 1
num_epochs = 5
num_samples = 1000 # number of words to be sampled
batch_size = 20
seq_length = 30
learning_rate = 0.002 # Load "Penn Treebank" dataset
corpus = Corpus()
ids = corpus.get_data('data/train.txt', batch_size)
vocab_size = len(corpus.dictionary)
num_batches = ids.size(1) // seq_length # RNN based language model
class RNNLM(nn.Module):
def __init__(self, vocab_size, embed_size, hidden_size, num_layers):
super(RNNLM, self).__init__()
self.embed = nn.Embedding(vocab_size, embed_size)
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True)
self.linear = nn.Linear(hidden_size, vocab_size) def forward(self, x, h):
# Embed word ids to vectors
x = self.embed(x) # Forward propagate LSTM
out, (h, c) = self.lstm(x, h) # Reshape output to (batch_size*sequence_length, hidden_size)
out = out.reshape(out.size(0)*out.size(1), out.size(2)) # Decode hidden states of all time steps
out = self.linear(out)
return out, (h, c) model = RNNLM(vocab_size, embed_size, hidden_size, num_layers).to(device) # Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # Truncated backpropagation
def detach(states):
return [state.detach() for state in states] # Train the model
for epoch in range(num_epochs):
# Set initial hidden and cell states
states = (torch.zeros(num_layers, batch_size, hidden_size).to(device),
torch.zeros(num_layers, batch_size, hidden_size).to(device)) for i in range(0, ids.size(1) - seq_length, seq_length):
# Get mini-batch inputs and targets
inputs = ids[:, i:i+seq_length].to(device)
targets = ids[:, (i+1):(i+1)+seq_length].to(device) # Forward pass
states = detach(states)
outputs, states = model(inputs, states)
loss = criterion(outputs, targets.reshape(-1)) # Backward and optimize
model.zero_grad()
loss.backward()
clip_grad_norm(model.parameters(), 0.5)
optimizer.step() step = (i+1) // seq_length
if step % 100 == 0:
print ('Epoch [{}/{}], Step[{}/{}], Loss: {:.4f}, Perplexity: {:5.2f}'
.format(epoch+1, num_epochs, step, num_batches, loss.item(), np.exp(loss.item()))) # Test the model
with torch.no_grad():
with open('sample.txt', 'w') as f:
# Set intial hidden ane cell states
state = (torch.zeros(num_layers, 1, hidden_size).to(device),
torch.zeros(num_layers, 1, hidden_size).to(device)) # Select one word id randomly
prob = torch.ones(vocab_size)
input = torch.multinomial(prob, num_samples=1).unsqueeze(1).to(device) for i in range(num_samples):
# Forward propagate RNN
output, state = model(input, state) # Sample a word id
prob = output.exp()
word_id = torch.multinomial(prob, num_samples=1).item() # Fill input with sampled word id for the next time step
input.fill_(word_id) # File write
word = corpus.dictionary.idx2word[word_id]
word = '\n' if word == '<eos>' else word + ' '
f.write(word) if (i+1) % 100 == 0:
print('Sampled [{}/{}] words and save to {}'.format(i+1, num_samples, 'sample.txt')) # Save the model checkpoints
torch.save(model.state_dict(), 'model.ckpt')
import torch
import os class Dictionary(object):
def __init__(self):
self.word2idx = {}
self.idx2word = {}
self.idx = 0 def add_word(self, word):
if not word in self.word2idx:
self.word2idx[word] = self.idx
self.idx2word[self.idx] = word
self.idx += 1 def __len__(self):
return len(self.word2idx) class Corpus(object):
def __init__(self):
self.dictionary = Dictionary() def get_data(self, path, batch_size=20):
# Add words to the dictionary
with open(path, 'r') as f:
tokens = 0
for line in f:
words = line.split() + ['<eos>']
tokens += len(words)
for word in words:
self.dictionary.add_word(word) # Tokenize the file content
ids = torch.LongTensor(tokens)
token = 0
with open(path, 'r') as f:
for line in f:
words = line.split() + ['<eos>']
for word in words:
ids[token] = self.dictionary.word2idx[word]
token += 1
num_batches = ids.size(0) // batch_size
ids = ids[:num_batches*batch_size]
return ids.view(batch_size, -1)

PyTorch(二)Intermediate的更多相关文章

  1. 从头学pytorch(二) 自动求梯度

    PyTorch提供的autograd包能够根据输⼊和前向传播过程⾃动构建计算图,并执⾏反向传播. Tensor Tensor的几个重要属性或方法 .requires_grad 设为true的话,ten ...

  2. 从头学pytorch(二十):残差网络resnet

    残差网络ResNet resnet是何凯明大神在2015年提出的.并且获得了当年的ImageNet比赛的冠军. 残差网络具有里程碑的意义,为以后的网络设计提出了一个新的思路. googlenet的思路 ...

  3. 从头学pytorch(二十二):全连接网络dense net

    DenseNet 论文传送门,这篇论文是CVPR 2017的最佳论文. resnet一文里说了,resnet是具有里程碑意义的.densenet就是受resnet的启发提出的模型. resnet中是把 ...

  4. 如何在Anoconda Prompt 安装pytorch

    一.首先需要安装好Anoconda,具体安装步骤可通过https://www.cnblogs.com/chenfeifen/p/10266012.html查看 由于官方下载更新工具包的速度很慢,因此添 ...

  5. 深入浅出腾讯BERT推理模型--TurboTransformers

    Overview TurboTransformers是腾讯最近开源的BERT推理模型,它的特点就是一个字,快.本人用BERT(huggingface/transformers)在V100上做了测试,测 ...

  6. 【转载】PyTorch系列 (二):pytorch数据读取

    原文:https://likewind.top/2019/02/01/Pytorch-dataprocess/ Pytorch系列: PyTorch系列(一) - PyTorch使用总览 PyTorc ...

  7. 深度学习框架PyTorch一书的学习-第一/二章

    参考https://github.com/chenyuntc/pytorch-book/tree/v1.0 希望大家直接到上面的网址去查看代码,下面是本人的笔记 pytorch的设计遵循tensor- ...

  8. pytorch种, 一维Conv1d, 二维Conv2d

    pytorch之nn.Conv1d详解 之前学习pytorch用于文本分类的时候,用到了一维卷积,花了点时间了解其中的原理,看网上也没有详细解释的博客,所以就记录一下. Conv1dclass tor ...

  9. 『PyTorch』第十二弹_nn.Module和nn.functional

    大部分nn中的层class都有nn.function对应,其区别是: nn.Module实现的layer是由class Layer(nn.Module)定义的特殊类,会自动提取可学习参数nn.Para ...

随机推荐

  1. web.xml hello1代码分析

    在“Web页”节点下,展开WEB-INF节点,然后双击web.xml文件进行查看. 上下文参数提供Web应用程序所需的配置信息.应用程序可以定义自己的上下文参数.此外,JavaServer Faces ...

  2. Spring注解方式配置Redis

    @Configuration public class RedisConfiguraion { @Bean public JedisConnectionFactory redisConnectionF ...

  3. angular分页插件tm.pagination二次触发问题解决歪方案

    今天在学习angularjs的分页插件时遇到了一个前端的问题,谷歌浏览器开发者模式调试的时候发现每次点击分页刷新按钮会触发两次后台请求,ajax向后台发送了两次请求,这对于强迫症患者来说是一个比较恶心 ...

  4. [剑指Offer]7-重建二叉树

    链接 https://www.nowcoder.com/practice/8a19cbe657394eeaac2f6ea9b0f6fcf6?tpId=13&tqId=11157&tPa ...

  5. jq修改导航栏样式(选中、使用两张图片替代的是否选中效果)

    <footer class="toolbar"> <ul> <li> <a href="{:url('Index/home')} ...

  6. 652. Find Duplicate Subtrees找出重复的子树

    [抄题]: 就是出现了多次的子树,可以只包括一个点. Given a binary tree, return all duplicate subtrees. For each kind of dupl ...

  7. yum -y install php-mysql 版本冲突

    yum -y install  php-mysql 版本冲突 2018年09月02日 19:16:59 乐于技术分享 阅读数:640   [root@itop yum.repos.d]# yum -y ...

  8. [leetcode]57. Insert Interval插入区间

    Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessa ...

  9. wget(转)

    wget(转)   wget是在Linux下开发的开放源代码的软件,作者是Hrvoje Niksic,后来被移植到包括Windows在内的各个平台上.它有以下功能和特点:(1)支持断点下传功能:这一点 ...

  10. React-router4 第八篇 ReactCSSTransitionGroup 动画转换

    https://reacttraining.com/react-router/web/example/animated-transitions 动画转换这么高级,其实是又引入了一个组件,没什么特别, ...