The perception and large margin classifiers
假设样例按照到来的先后顺序依次定义为。为样本特征,为类别标签。任务是到来一个样例,给出其类别结果的预测值,之后我们会看到真实值,然后根据真实值来重新调整模型参数,整个过程是重复迭代的过程,直到所有的样例完成。这么看来,我们也可以将原来用于批量学习的样例拿来作为在线学习的样例。在在线学习中,我们主要关注在整个预测过程中预测错误的样例数。
用表示正例,表示负例,支持向量机中提到的感知算法(perception algorithm),我们的假设函数为:
其中,x是n维特征向量,是n+1维参数权重。函数g用来将计算结果映射到-1和1上。具体公式如下:
提出一个在线学习算法如下:
新来一个样例,我们先用从之前样例学习到的来得到样例的预测值y,如果(即预测正确),那么不改变,反之
如果对于预测错误的样例,进行调整时只需加上(实际上为正例)或者减去(实际负例)样本特征x值即可。初始值为向量0。这里我们关心的是的符号,而不是它的具体值。调整方法非常简单,然而这个简单的调整方法还是很有效的,它的错误率不仅是有上界的,而且这个上界不依赖于样例数和特征维度。
下面定理阐述了错误率上界:
定理(Block and Novikoff):
给定按照顺序到来的样例。假设对于所有的样例,也就是说特征向量长度有界为D。更进一步,假设存在一个单位长度向量且。也就是说对于y=1的正例,,反例,u能够有的间隔将正例和反例分开。那么感知算法的预测的错误样例数不超过。
根据对SVM的理解,这个定理就可以阐述为:如果训练样本线性可分,并且几何间距至少是,样例样本特征向量最长为D,那么感知算法错误数不会超过。这个定理是62年提出的,63年Vapnik提出SVM,可见提出也不是偶然的,感知算法也许是当时的热门。
下面主要讨论这个定理的证明:
感知算法只在样例预测错误时进行更新,定义是第k次预测错误时使用的样本特征权重, 初始化为0向量。假设第k次预测错误发生在样例上,利用计算值时得到的结果不正确(也就是说,调换x和顺序主要是为了书写方便)。也就是说下面的公式成立:
根据感知算法的更新方法,我们有。这时候,两边都乘以u得到
两个向量做内积的时候,放在左边还是右边无所谓,转置符号标注正确即可。
这个式子是个递推公式,就像等差数列一样f(n+1)=f(n)+d,由此我们可得:
因为初始为0,下面我们利用前面推导出的和得到
也就是说的长度平方不会超过与D的平方和。
又是一个等差不等式,得到:
两边开根号得:
其中第二步可能有点迷惑,我们细想u是单位向量的话,
因此上面的不等式成立,最后得到:
也就是预测错误的数目不会超过样本特征向量x的最长长度与几何间隔的平方,实际上整个调整过程中就是x的线性组合。
整个感知算法应该是在线学习中最简单的一种了。
The perception and large margin classifiers的更多相关文章
- 基于Caffe的Large Margin Softmax Loss的实现(中)
小喵的唠叨话:前一篇博客,我们做完了L-Softmax的准备工作.而这一章,我们开始进行前馈的研究. 小喵博客: http://miaoerduo.com 博客原文: http://www.miao ...
- 基于Caffe的Large Margin Softmax Loss的实现(上)
小喵的唠叨话:在写完上一次的博客之后,已经过去了2个月的时间,小喵在此期间,做了大量的实验工作,最终在使用的DeepID2的方法之后,取得了很不错的结果.这次呢,主要讲述一个比较新的论文中的方法,L- ...
- Large Margin Softmax Loss for Speaker Verification
[INTERSPEECH 2019接收] 链接:https://arxiv.org/pdf/1904.03479.pdf 这篇文章在会议的speaker session中.本文主要讨论了说话人验证中的 ...
- cosface: large margin cosine loss for deep face recognition
目录 概 主要内容 Wang H, Wang Y, Zhou Z, et al. CosFace: Large Margin Cosine Loss for Deep Face Recognition ...
- Large Margin DAGs for Multiclass Classification
Abstract We present a new learning architecture: the Decision Directed Acyclic Graph (DDAG), which i ...
- 吴恩达机器学习笔记43-SVM大边界分类背后的数学(Mathematics Behind Large Margin Classification of SVM)
假设我有两个向量,
- 吴恩达机器学习笔记42-大边界的直观理解(Large Margin Intuition)
这是我的支持向量机模型的代价函数,在左边这里我画出了关于
- Kemaswill 机器学习 数据挖掘 推荐系统 Ranking SVM 简介
Ranking SVM 简介 排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Le ...
- Coursera, Machine Learning, SVM
Support Vector Machine (large margin classifiers ) 1. cost function and hypothesis 下面那个紫色线就是SVM 的cos ...
随机推荐
- STL 小白学习(4) deque
#include <iostream> #include <deque> //deque容器 双口 using namespace std; void printDeque(d ...
- 算法-最通俗易懂的KMP算法详解
有些算法,适合从它产生的动机,如何设计与解决问题这样正向地去介绍.但KMP算法真的不适合这样去学.最好的办法是先搞清楚它所用的数据结构是什么,再搞清楚怎么用,最后为什么的问题就会有恍然大悟的感觉.我试 ...
- Daily record-September
September11. I feel much more reassured when I've been for a health check. 体检之后我感到放心多了.2. The diseas ...
- C#mvc下拉框绑定
控制器 ViewData["select1"] = new SelectList(b.bd(),"names","names"); 视图 @ ...
- letCode-2
letCode第二题题目如下: 给出两个 非空 的链表用来表示两个非负的整数.其中,它们各自的位数是按照 逆序 的方式存储的,并且它们的每个节点只能存储 一位 数字. 如果,我们将这两个数相加起来,则 ...
- Qt中的Q_D宏和d指针
_ZTS7QObject 一.Q_D的在文件中的提法 Q_D的设置意在方便地获取私有类指针,文件为qglobal.h.下面的##是宏定义的连字符.假设类名是A,那么A##Private翻译过来就是AP ...
- Van Emde Boas Tree
van Emde Boas trees 支持所有优先级优先级队列的操作,并且巧妙的是它对于SEARCH, INSERT,DELETE,MINIMUM,MAXMUN,SUCCESSOR,和PREDECE ...
- 【转载】 星际争霸2的AI环境搭建
原文地址: https://blog.csdn.net/qq_40244666/article/details/80957644 作者:BOY_IT_IT 来源:CSDN -------------- ...
- hdu 6241 Color a Tree 2017 CCPC 哈理工站 L
Bob intends to color the nodes of a tree with a pen. The tree consists of NN nodes. These nodes are ...
- 温度转换-java
java 温度转换 题目内容: 写一个将华氏温度转换成摄氏温度的程序,转换的公式是: °F = (9/5)*°C + 32 其中C表示摄氏温度,F表示华氏温度. 程序的输入是一个整数,表示华氏温度.输 ...