MT【53】对数平均做数列放缩
【从最简单的做起】——波利亚
请看下面三道循序渐进不断加细的题。
评:随着右边的不断加细,解决问题的方法也越来越“高端”.当然最佳值$ln2$我们可以用相对
容易的方法来证明:
$\because ln(2k+1)-ln(2k-1)>\frac{1}{k}$两边$k$从$n+1$取到$2n$得$$ln2>\sum_{k=1}^{n}{\frac{1}{n+k}}$$
MT【53】对数平均做数列放缩的更多相关文章
- MT【26】ln(1+x)的对数平均放缩
评:1.某种程度上$ln(1+x)\ge \frac{2x}{2+x}$是最佳放缩. 2.这里涉及到分母为幂函数型的放缩技巧,但是不够强,做不了这题.
- MT【148】凸数列
(2018浙江省赛13题) 设实数$x_1,x_2,\cdots,x_{2018}$满足$x_{n+1}^2\le x_nx_{n+2},(n=1,2,\cdots,2016)$和$\prod\lim ...
- MT【307】周期数列
(2017浙江省数学竞赛) 设数列$\{a_n\}$满足:$|a_{n+1}-2a_n|=2,|a_n|\le2,n\in N^+$证明:如果$a_1$为有理数,则从某项后$\{a_n\}$为周期数列 ...
- hdu5988(费用流,对数相乘做加法)
题意:一个网络流的图,有n个点,从1~n,然后m条边,每个点有两个值,一个是人的数量si一个是饭的数量bi.每条m边有容量ci,还有走上去可能踩断电线的概率pi(第一次踩上去没有事,之后都要p概率). ...
- MT【256】2016四川高考解答压轴题
(2016四川高考数学解答压轴题)设函数$f(x)=ax^2-a-\ln x,a\in R$. 1)讨论$f(x)$的单调性;2)确定$a$的所有可能值,使得$f(x)>\dfrac{1}{x} ...
- [PHP] 2018年终总结
去掉敏感信息后的不完整版 ==========================================================================2018年12月29日 记 ...
- 论文阅读笔记三十:One pixel attack for fooling deep neural networks(CVPR2017)
论文源址:https://arxiv.org/abs/1710.08864 tensorflow代码: https://github.com/Hyperparticle/one-pixel-attac ...
- [代码解析]Mask R-CNN介绍与实现(转)
文章来源 DFann 版权声明:如果你觉得写的还可以,可以考虑打赏一下.转载请联系. https://blog.csdn.net/u011974639/article/details/78483779 ...
- InnoDB引擎中的索引与算法9
5.1 InnoDB支持以下几种常见的索引: B+树索引 全文索引 哈希索引(自适应哈希索引) 关于哈希索引的说明: -- 1.InnoDB的哈希索引是自适应的,其根据表的使用情况自动生成哈希索引,不 ...
随机推荐
- SQL Server 中如何移动tempdb到新的位置
操作步骤:1.检查tempdb的逻辑名字和它的存在位置.可以使用下面语句: SELECT name, physical_name FROM sys.master_files WHERE databas ...
- 重装系统之无法在驱动器0的分区1上安装windows
在通过U盘或光盘安装win8/win8.1/win10 时,遇到无法安装的问题,提示“无法在驱动器0的分区1上安装windows”,格式化分区也不能解决,进而提示Windows无法安装到这个磁盘,选中 ...
- odoo 10.0部署shell
环境ubuntu16+nginx+python2.7.12+postgresql9.5+odoo 10.0 community #!/bin/bash #author:guoyihot@outlook ...
- 利用数据库触发器让字段与自增长Id相关联
十年河东,十年河西,莫欺少年穷 学无止境,精益求精 今天是数据库脚本类的代码,所以不想过多阐述 如下数据表: create table Card( Id ,) primary key, CardNo ...
- 浅谈CDQ分治与偏序问题
初识CDQ分治 CDQ分治是一个好东西,一直听着dalao们说所以就去学了下. CDQ分治是我们处理各类问题的重要武器.它的优势在于可以顶替复杂的高级数据结构,而且常数比较小:缺点在于必须离线操作. ...
- Luogu P2473 [SCOI2008]奖励关
比较恶心的概率(期望)+状压DP,想正推2H的我瑟瑟发抖 由于数据范围不大,因此我们可以直接状压每个宝物取或不取的情况,设\(f_{i,j}\)表示前\(i\)轮且宝物是否取过的状态为\(j\)时的方 ...
- [Oracle][Metadata]如何查找与某一个功能相关的数据字典名
当Oracel的一个新功能出来的时候,我们可能不知道所有与此功能关联的数据字典名称,那么如何才能得到这些 meta data 的 meta data 呢? 可以通过 dicitonary 来查看: 例 ...
- 关于QQ的NABCD模型
关于QQ的NABCD模型 N--Need 随着电脑的普及,人们在网络上进行交流的时间越来越多,由于现有的交流工具还不是那么的完善,还不能够完全满足人们在交流时的需求.因此为了满足人们更多的需求,我们设 ...
- github个人心得和链接
github使用心得: 在本次github使用过程中,我总结了git常用命令,都有哪些功能? git常用命令: git config :配置git git add:更新working director ...
- Geekers团队成立日志
大家好,作为团队的队长,今天在这里非常荣幸能够发表我们团队的第一篇博客,来宣布我们团队的名字:Geekers! Geek,英文中代表“怪人”,随着时代进步Geek被赋予了新的含义——极客!Steve ...