题意

给定一棵 \(n\) 个点的树和一个常数 \(k\) , 对于每个 \(i\) , 求

\[\displaystyle S(i) = \sum _{j=1} ^ {n} \mathrm{dist}(i, j)^k
\]

\(n ≤ 50000, k ≤ 150\)

题解

先划划那个 \(S(i)\) 的式子

我们需要知道一个化 \(x^n(n \ge 0)\) 的东西qwq

\[\displaystyle x^n=\sum_{k=0}^{n}\begin{Bmatrix} n \\ k \end{Bmatrix} x^{\underline k}=\sum _{k=0}^{n}(-1)^k \begin{Bmatrix} n \\ k \end{Bmatrix} x^{\overline k}
\]

这个式子十分的有用,可以转化很多幂指数的东西为斯特林数。

\[\displaystyle S(i)=\sum _{j=1}^{n}\sum_{l=0}^{k}\begin{Bmatrix} k \\ l \end{Bmatrix} \mathrm{dist}(i,j)^{\underline l}
\]

然后换个位置

\[\displaystyle S(i)=\sum_{l=0}^{k}\begin{Bmatrix} k \\ l \end{Bmatrix}\sum _{j=1}^{n} \mathrm{dist}(i,j)^{\underline l}
\]

然后用一下组合数的一个定义式子:

\[\displaystyle \binom n k = \frac{n!}{(n-k)!k!}=\frac{n^{\underline k}}{k!}
\]

\[\therefore \displaystyle n^{\underline k}=\binom n k k!
\]

这也可以导出下降幂了

\[\displaystyle S(i)=\sum_{l=0}^{k}\begin{Bmatrix} k \\ l \end{Bmatrix} l!\sum _{j=1}^{n} \binom {\mathrm{dist}(i,j)} l
\]

前面那一部分显然是稳定不变的,我们就可以去维护第二部分啦

令 $$\displaystyle dp[i][l]=\sum _{j=1}^{n} \binom {\mathrm{dist}(i,j)} l$$

由于是组合数我们就可以直接套用它的一个递推式来转移了(因为转移的时候,所有 \(\mathrm{dist}(i,j)\) 同增减 \(1\) )

\[\displaystyle \binom n k = \binom {n-1} {k} + \binom {n-1} {k-1}
\]

同样的,就有 \(dp[i][l]=dp[j][l]+dp[j][l-1]\) 此处 \(j\) 是 \(i\) 的一个儿子。(这个递推式用来转移真的是巧妙啊qwq)

然后我们要算两个 \(dp\) 值,一个 \(f_{i,l}\) 统计子树的,一个 \(g_{i,l}\) 统计子树外的。

统计子树外的时候,要先算父亲那过来的贡献,然后再算兄弟的贡献。

算兄弟的贡献可以用父亲贡献减掉自己的贡献(见代码中分步写的 \(g_{i,j}\) 的转移) 而且要先转移,再遍历

所以最后 \(O(nk)\) 个状态, \(O(1)\) 的转移,总复杂度就是 \(\Theta(nk)\) .

那个解压输入直接拷贝了 Hany01 大佬的 qwq不会写

代码

/**************************************************************
Problem: 2159
User: zjp_shadow
Language: C++
Result: Accepted
Time:4156 ms
Memory:67680 kb
****************************************************************/ #include <bits/stdc++.h>
#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
using namespace std; inline bool chkmin(int &a, int b) {return b < a ? a = b, 1 : 0;}
inline bool chkmax(int &a, int b) {return b > a ? a = b, 1 : 0;} inline int read() {
int x = 0, fh = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar()) x = (x * 10) + (ch ^ 48);
return x * fh;
} void File() {
#ifdef zjp_shadow
freopen ("2159.in", "r", stdin);
freopen ("2159.out", "w", stdout);
#endif
} const int Mod = 10007, N = 50010; vector<int> G[N]; int n, k, S[160][160];
int fac[160]; void Init(int maxn) {
S[0][0] = 1; For (i, 1, maxn) { S[i][1] = 1; For (j, 1, i) S[i][j] = (j * S[i - 1][j] % Mod + S[i - 1][j - 1]) % Mod; }
fac[0] = fac[1] = 1; For (i, 2, maxn) fac[i] = fac[i - 1] * i % Mod;
} int f[N][160], sz[N]; void Dfs1(int u, int fa) {
f[u][0] = 1; sz[u] = 1;
For (i, 0, G[u].size() - 1) {
int v = G[u][i]; if (v == fa) continue ;
Dfs1(v, u); sz[u] += sz[v];
(f[u][0] += f[v][0]) %= Mod;
For (j, 1, k) (f[u][j] += f[v][j] + f[v][j - 1]) %= Mod;
}
} int g[N][160]; void Dfs2(int u, int fa) {
g[u][0] = (n - sz[u]) % Mod;
if (fa) {
For (i, 1, k) {
g[u][i] = g[fa][i] + g[fa][i - 1];
g[u][i] += f[fa][i] - (f[u][i] + f[u][i - 1]);
g[u][i] += f[fa][i - 1] - (f[u][i - 1] + (i > 1 ? f[u][i - 2] : 0));
g[u][i] = (g[u][i] % Mod + Mod) % Mod;
}
}
For (i, 0, G[u].size() - 1) { int v = G[u][i]; if (v == fa) continue ; Dfs2(v, u); }
} int ans[N]; inline void Input_Umcompress()
{
register int l, now, a, b, q, tmp, u, v;
n = read(), k = read(), l = read(), now = read(), a = read(), b = read(), q = read();
For(i, 1, n - 1)
now = (now * a + b) % q, tmp = i < l ? i : l,
u = i - now % tmp, v = i + 1, G[u].push_back(v), G[v].push_back(u);
} int main () {
File(); Init(150);
Input_Umcompress();
/*n = read(); k = read();
For (i, 1, n - 1) {
int u = read(), v = read();
G[u].push_back(v);
G[v].push_back(u);
}*/ Dfs1(1, 0); Dfs2(1, 0); For (i, 1, n) {
For (l, 0, k)
(ans[i] += S[k][l] * fac[l] % Mod * (f[i][l] + g[i][l]) % Mod) %= Mod;
printf ("%d\n", ans[i]);
} return 0;
}

BZOJ 2159: Crash 的文明世界(树形dp+第二类斯特林数+组合数)的更多相关文章

  1. 【bzoj2159】Crash 的文明世界(树形dp+第二类斯特林数)

    传送门 题意: 给出一颗\(n\)个结点的树,对于每个结点输出其答案,每个结点的答案为\(ans_x=\sum_{i=1}^ndis(x,i)^k\). 思路: 我们对于每个结点将其答案展开: \[ ...

  2. BZOJ.2159.Crash的文明世界(斯特林数 树形DP)

    BZOJ 洛谷 挺套路但并不难的一道题 \(Description\) 给定一棵\(n\)个点的树和\(K\),边权为\(1\).对于每个点\(x\),求\(S(x)=\sum_{i=1}^ndis( ...

  3. bzoj 2159 Crash 的文明世界 && hdu 4625 JZPTREE ——第二类斯特林数+树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2159 学习材料:https://blog.csdn.net/litble/article/d ...

  4. bzoj 2159: Crash 的文明世界

    Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 480  Solved: 234[Submit][Status][Discuss] Descripti ...

  5. BZOJ2159 Crash的文明世界——树上DP&&第二类Stirling数

    题意 给定一个有 $n$ 个结点的树,设 $S(i)$ 为第 $i$ 个结点的“指标值”,定义为 $S(i)=\sum_{i=1}^{n}dist(i,j)^k$,$dist(i, j)$ 为结点 $ ...

  6. 【hdu4045】Machine scheduling(dp+第二类斯特林数)

    传送门 题意: 从\(n\)个人中选\(r\)个出来,但每两个人的标号不能少于\(k\). 再将\(r\)个人分为不超过\(m\)个集合. 问有多少种方案. 思路: 直接\(dp\)预处理出从\(n\ ...

  7. bzoj 2159 Crash 的文明世界 & hdu 4625 JZPTREE —— 第二类斯特林数+树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2159 使用公式:\( n^{k} = \sum\limits_{i=0}^{k} S(k,i ...

  8. [bzoj 2159]Crash的文明世界

    今天看到一个鬼题 心情好的时候写 [题意]求树上所有点对距离的k次方和,所有边权为1 大爷方的题解:http://tonyfang.is-programmer.com/posts/204972.htm ...

  9. bzoj 2159 - Crash 的 文明世界

    Description 给定一棵\(n\le 10^5\)的树, 和\(k\le 150\) 求每个点\(x\)的\[S(x) = \sum_{y=1}^n dis(x, y) ^ k\] Analy ...

随机推荐

  1. Luogu4640 BJWC2008 王之财宝 容斥、Lucas

    传送门 题意:有$N$种物品,其中$T$个物品有限定数量$B_i$,其他则没有限定.问从中取出不超过$M$个物品的方案数,对质数$P$取模.$N,M \leq 10^9 , T \leq 15 , P ...

  2. 创建Web API并使用

    昨晚有教一个网友在ASP.NET MVC里,创建Web API和在MVC视图中应用此API. 可以在ASP.NET MVC中,创建程序的model: namespace Insus.NET.Model ...

  3. WPF解决界面全屏化但不遮挡任务栏的问题

    原文:WPF解决界面全屏化但不遮挡任务栏的问题 学习C#有一段时间了,现在跟着做项目,碰到有个客户端界面总是全屏,对于客户来说没有任务栏很不习惯,所以做了些略微的修改   </pre>&l ...

  4. Python从菜鸟到高手(3):声明变量

    变量(variable)是Python语言中一个非常重要的概念.变量的主要作用就是为Python程序中的某个值起一个名字.类似于"张三"."李四"." ...

  5. Visual Studio 2019 Serial Keys

    Visual Studio 2019 Enterprise BF8Y8-GN2QH-T84XB-QVY3B-RC4DF Visual Studio 2019 Professional NYWVH-HT ...

  6. JAVA CAS原理浅谈

    java.util.concurrent包完全建立在CAS之上的,没有CAS就不会有此包.可见CAS的重要性. CAS CAS:Compare and Swap, 翻译成比较并交换. java.uti ...

  7. Oracle_安装说明

    1.先到Oracle官网上下载11g oracle Database 11g 第 2 版 (11.2.0.1.0) 标准版.标准版 1 以及企业版 适用于 Microsoft Windows (x64 ...

  8. Ansible之playbook的使用总结 - 运维笔记

    之前详细介绍了Ansible的安装, 配置, 以及Ansible常用模块的使用. 下面对Ansible的playbook用法做一小结. 为什么引入playbook?一般运维人员完成一个任务, 比如安装 ...

  9. 四则运算C语言程序

    #include<stdio.h> #include<Windows.h> #include<time.h> void main() { int a, b, c, ...

  10. 《Linux内核分析》期终总结&《Linux及安全》期中总结

    <Linux内核分析>期终总结&<Linux及安全>期中总结 [李行之 原创作品 转载请注明出处 <Linux内核分析>MOOC课程http://mooc. ...