Luogu 1312 【NOIP2011】玛雅游戏 (搜索)

Description

Mayan puzzle 是最近流行起来的一个游戏。游戏界面是一个7行5列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上。游戏通关是指在规定的步数内消除所有的方块,消除方块的规则如下: 1、 每步移动可以且仅可以沿横向(即向左或向右)拖动某一方块一格:当拖动这一方块时,如果拖动后到达的位置(以下称目标位置)也有方块,那么这两个方块将交换位置(参见输入输出样例说明中的图6到图7);如果目标位置上没有方块,那么被拖动的方块将从原来的竖列中抽出,并从目标位置上掉落(直到不悬空,参见下面图1 和图2);



2、 任一时刻,如果在一横行或者竖列上有连续三个或者三个以上相同颜色的方块,则它们将立即被消除(参见图1 到图3)。 注意:

a) 如果同时有多组方块满足消除条件,几组方块会同时被消除(例如下面图4,三个颜色为1 的方块和三个颜色为2 的方块会同时被消除,最后剩下一个颜色为2 的方块)。

b) 当出现行和列都满足消除条件且行列共享某个方块时,行和列上满足消除条件的所有方块会被同时消除(例如下面图5 所示的情形,5 个方块会同时被消除)。

3、 方块消除之后,消除位置之上的方块将掉落,掉落后可能会引起新的方块消除。注意:掉落的过程中将不会有方块的消除。上面图1到图3给出了在棋盘上移动一块方块之后棋盘的变化。棋盘的左下角方块的坐标为(0,0),将位于(3,3)的方块向左移动之后,游戏界面从图1变成图2所示的状态,此时在一竖列上有连续三块颜色为4 的方块,满足消除条件,消除连续3 块颜色为4的方块后,上方的颜色为3 的方块掉落,形成图3 所示的局面。

Input

共6 行。

第一行为一个正整数n,表示要求游戏通关的步数。

接下来的5 行,描述7 * 5 的游戏界面。每行若干个整数,每两个整数之间用一个空格隔开,每行以一个0 结束,自下向上表示每竖列方块的颜色编号(颜色不多于10 种,从1 开始顺序编号,相同数字表示相同颜色)。

输入数据保证初始棋盘中没有可以消除的方块。

Output

如果有解决方案,输出n 行,每行包含3 个整数x,y,g,表示一次移动,每两个整数之间用一个空格隔开,其中(x,y)表示要移动的方块的坐标,g 表示移动的方向,1 表示向右移动,-1 表示向左移动。注意:多组解时,按照x 为第一关健字,y 为第二关健字,1优先于-1,给出一组字典序最小的解。游戏界面左下角的坐标为(0,0)。

如果没有解决方案,输出一行,包含一个整数-1。

Sample Input

3

1 0

2 1 0

2 3 4 0

3 1 0

2 4 3 4 0

Sample Output

2 1 1

3 1 1

3 0 1

Http

Luogu:https://www.luogu.org/problem/show?pid=1312

Source

搜索

解决思路

首先观察题目的数据范围,给出了棋盘面积固定是5*7,并且给出了固定的步数,所以我们可以想到搜索的方法。

搜索搜什么?每一步我们我们搜索一个要移动的格子,然后再看它是向左还是向右移动,移动完后再进行消除和下滑操作。

说起来不难,但是细节和剪枝需要注意。

细节:

1.题目输入的方式需要处理,为了方便操作,这里采用左下角为(1,1)的方式编号。

2.注意输出的格式是先纵行再横列,并且从0开始编号,即这里程序中的(i,j)输出时要变成(j-1,i-1)

3.处理下落时要从最底下开始,即从行1开始

4.消除是可以连续的,即如果两个消除有重叠的部分,也都是要消除的。不能找到一个就立刻在矩阵中修改,比如有4个连在一起的,如果扫到第2个时就把前三个直接消除了,那么第4个就不会被消除。所以要单独标记出来,全部扫描后再统一消除

几个剪枝

1.因为题目给出了字典序的定义,所以我们以列j为外循环行i为内循环,先向右移再向左移的搜索顺序来进行,这样保证找到的第一个可行解的字典序最小。

2.对于向左移的情况,如果左边的格子不是空的,则不需要这一步,因为如果这两个格子都有,那么交换这两个格子的状态已经在前面搜索过了

3.在一个状态中如果存在一种颜色数量为1或2,则直接退出,因为这时不可能存在解。

4.如果两个方块的颜色是一样的,则没有必要交换,因为没有意义

个人亲测,第2,4条剪枝是最有用的,而第1条是必加的。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std; const int maxN=9;
const int N=7;
const int M=5;
const int inf=2147483647; int Step;
int Mat[maxN][maxN];//棋盘
int Outp[15][5];//存下输出时需要的信息 void dfs(int step);//搜索移动哪一个
void Clear();//清除相连的和向下掉落
void OutpMat();//中间输出查看 int main()
{
memset(Mat,0,sizeof(Mat));
scanf("%d",&Step);
for (int i=1;i<=5;i++)//读入,并将其处理成需要的格式
{
int j=1;
int x;
while ((scanf("%d",&x)!=EOF)&&(x!=0))
{
Mat[j][i]=x;
j++;
}
}
//OutpMat();
dfs(1);
cout<<-1<<endl;//无解输出-1
return 0;
} void dfs(int step)//搜索,step表示是第几步
{
if (step==Step+1)//当达到目标时,检查是否清除完毕
{
Clear();//保险起见,再进行一次清除和掉落
for (int i=1;i<=7;i++)
for (int j=1;j<=5;j++)
if (Mat[i][j]!=0)//检测是否全部为0
return;
for (int i=1;i<=Step;i++)
printf("%d %d %d\n",Outp[i][1]-1,Outp[i][2]-1,Outp[i][3]);//注意-1,因为题目从0开始编号
exit(0);//结束程序
}
int nowMat[maxN][maxN];//备份当前矩阵
int Colorcnt[11];//剪枝3,统计每一种颜色的个数
memset(Colorcnt,0,sizeof(Colorcnt));
for (int i=1;i<=7;i++)
for (int j=1;j<=5;j++)
Colorcnt[Mat[i][j]]++;
for (int i=1;i<=10;i++)
if ((Colorcnt[i]==1)||(Colorcnt[i]==2))//统计个数不满足时,直接退出
return; memcpy(nowMat,Mat,sizeof(Mat));//备份原矩阵
for (int j=1;j<=5;j++)
for (int i=1;i<=7;i++)
if (nowMat[i][j]!=0)//只有当前格子存在方块才进行操作
{
if ((j!=5)&&(nowMat[i][j]!=nowMat[i][j+1]))//剪枝4,颜色相同时不交换
{
memcpy(Mat,nowMat,sizeof(Mat));//将矩阵置为当前这一步
swap(Mat[i][j],Mat[i][j+1]);//交换
Clear();//处理下落和消除
Outp[step][1]=j;//记录信息
Outp[step][2]=i;
Outp[step][3]=1;
dfs(step+1);
}
if ((j!=1)&&(nowMat[i][j-1]==0)&&(nowMat[i][j]!=nowMat[i][j-1]))//剪枝3和4,当左边的不为空时不进行操作
{
memcpy(Mat,nowMat,sizeof(Mat));
swap(Mat[i][j],Mat[i][j-1]);
Clear();
Outp[step][1]=j;
Outp[step][2]=i;
Outp[step][3]=-1;
dfs(step+1);
}
}
return;
} void Clear()//处理下落和清除
{
bool cls[maxN][maxN];//cls代表当前消除的方块
while (1)
{
for (int i=2;i<=7;i++)//将可以下落的方块下落
for (int j=1;j<=5;j++)
if ((Mat[i][j]!=0)&&(Mat[i-1][j]==0))
{
int k=i;
while ((k>=2)&&(Mat[k][j]!=0)&&(Mat[k-1][j]==0))
{
Mat[k-1][j]=Mat[k][j];
Mat[k][j]=0;
k--;
}
}
memset(cls,0,sizeof(cls));//寻找能够清除的方块
bool is_cls=0;//标记这一轮中是否有清除操作,如果没有说明清除完毕
for (int i=1;i<=7;i++)
for (int j=1;j<=5;j++)
{
if ((Mat[i][j]!=0)&&(Mat[i][j]==Mat[i][j-1])&&(Mat[i][j]==Mat[i][j+1]))//横向三连
{
is_cls=1;
cls[i][j]=cls[i][j-1]=cls[i][j+1]=1;
}
if ((Mat[i][j]!=0)&&(Mat[i][j]==Mat[i+1][j])&&(Mat[i][j]==Mat[i-1][j]))//纵向三连
{
is_cls=1;
cls[i][j]=cls[i+1][j]=cls[i-1][j]=1;
}
}
if (is_cls==0)
break;
for (int i=1;i<=7;i++)
for (int j=1;j<=5;j++)
if (cls[i][j]==1)//将清除的置为空
Mat[i][j]=0;
}
return;
} void OutpMat()
{
for (int i=1;i<=7;i++)
{
for (int j=1;j<=5;j++)
cout<<Mat[i][j]<<" ";
cout<<endl;
}
cout<<endl;
return;
}

Luogu 1312 【NOIP2011】玛雅游戏 (搜索)的更多相关文章

  1. NOIP2011玛雅游戏

    闲的没事干,出来写一下早两天刷的一道搜索题NOIP2011玛雅游戏,其实这道题还是比较水的,虽然看起来可能有点复杂. 方法很简单粗暴,直接根据规则模拟就行. 话不多说直接上代码(关键操作在注释中有提到 ...

  2. [NOIP2011]玛雅游戏

    闲的没事干,出来写一下早两天刷的一道搜索题NOIP2011玛雅游戏,其实这道题还是比较水的,虽然看起来可能有点复杂. 方法很简单粗暴,直接根据规则模拟就行. 话不多说直接上代码(关键操作在注释中有提到 ...

  3. [Luogu 1312] noip11 Mayan游戏

    [Luogu 1312] noip11 Mayan游戏 Problem: Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即 ...

  4. Noip2011 Mayan游戏 搜索 + 模拟 + 剪枝

    写了一下午,终于AC了. 由于n<=5, 所以不需要太多的剪枝和技巧也能过.可以将操作后的消方块和下落和剪枝函数写到一个结构体中,这样会减少调试难度,更加简洁. 可以采用如下剪枝: 1. 如果当 ...

  5. noip2011 玛雅游戏 大模拟

    深搜+模拟 需要剪枝:同一移动向右移了就不需要向左移了 #include<cstdio> #include<cstring> #include<iostream> ...

  6. [COGS 622] [NOIP2011] 玛雅游戏 模拟

    整个模拟的关键除了打出来就是一个剪枝:对于两个左右相邻的块你不用再走←,因为走→是等效的 #include<cstdio> #include<cstring> #include ...

  7. [NOIP2011] mayan游戏(搜索+剪枝)

    题目描述 Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上.游戏通关是指在规定 ...

  8. 玛雅游戏[NOIP2011]

    题目描述 Mayan puzzle 是最近流行起来的一个游戏.游戏界面是一个7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上.游戏通关是指在规定 ...

  9. [Luogu 1640] SCOI2010 连续攻击游戏

    [Luogu 1640] SCOI2010 连续攻击游戏 DP太恶心,回来二分图这边放松一下心智. 这个建图真的是难以想到. 因为要递增啊,属性值放x部,装备放y部,对应连边跑Hungary就好了. ...

随机推荐

  1. 分布式全文搜索引擎ElasticSearch

    一 什么是 ElasticSearch Elasticsearch 是一个分布式可扩展的实时搜索和分析引擎,一个建立在全文搜索引擎 Apache Lucene(TM) 基础上的搜索引擎.当然 Elas ...

  2. CentOS 6下gcc升级的操作记录(由默认的4.4.7升级到6.4.0版本)

    机房一台centos6.9机器部署了jenkins发布系统,开发人员在用node编译js,发现依赖的gcc版本低了,故需要将gcc升级到高版本(至少5.0版本以上),这里选择升级到6.4.0版本,下面 ...

  3. 个人博客作业-Week7

    团队任务中个人感想 我们团队选的题目是爬虫, 采用用AVA平台开发了, 我原来JAVA语言不熟悉了, PM考虑这部分之后分配任务这部分感觉很多谢 团队当中的PM很清楚每个组员的力量, 所以PM跟每个组 ...

  4. Orcle安装环境及步骤

    Windows7环境下如何成功安装Oracle数据库      随着微软新一代操作系统 Windows7 的正式发行,使用 Windows7  的朋友也越来越多,很多人在 Windows7 环境下安装 ...

  5. TestSushu1

    https://github.com/jzjaerui/Individual-Project/blob/master/TestSushu1   <程序设计实践I> 题目:          ...

  6. 【转】STM32 独立看门狗简介

    STM32 的独立看门狗由内部专门的 40Khz 低速时钟驱动,即使主时钟发生故障,它也仍然有效. 看门狗的原理:单片机系统在外界的干扰下会出现程序跑飞的现象导致出现死循环,看门狗电路就是为了避免这种 ...

  7. Mock.js的简易使用

    一:安装 npm install mockjs --save-dev 二:引入 在src目录下创建mock.js文件,输入以下代码: // 引入mockjs const Mock = require( ...

  8. PHP压力测试使用apache的ab工具和Linux的time命令

    ab工具是apache自带的一个压力测试工具,可以在apache的安装路径下的bin目录下找到,我的环境中是在/usr/local/apache/bin/目录下: ab 压测主要使用两个参数: -n ...

  9. 面象对象设计原则之一:单一职责原则(Single Responsibility Principle, SRP)

    单一职责原则是最简单的面向对象设计原则,它用于控制类的粒度大小.单一职责原则定义如下:单一职责原则(Single Responsibility Principle, SRP):一个类只负责一个功能领域 ...

  10. Node fs模块同步读取写入追加

    JS文件中const fs = require("fs");console.log("开始进入文件读取.."); //同步的写入var data = fs.re ...