51nod1238 最小公倍数之和 V3
又被这神仙题给坑爆了。
神仙题解。
一开始我把lcm变成ij/gcd然后按照常规套路去推,推到最后发现不是miu * Id而是miu · Id......这还搞鬼啊。
正解居然跟这个差不多,先转成求其中一部分的函数,然后再加和......这谁顶得住呀。
大概就是先求这个
一顿操作之后得到了phi有关的式子......
然后原式就是这个
然后带进去推一推就出来杜教筛了...这第一步真是神奇。
最后是这个。
按照套路,前面分块,后面配一个g(x) = x2即可。
#include <cstdio>
#include <map> typedef long long LL;
const int N = , T = ;
const LL MO = ; std::map<LL, LL> mp;
LL inv2, inv6, F[N];
int p[N], top, phi[N];
bool vis[N]; inline LL qpow(LL a, LL b) {
LL ans = ;
while(b) {
if(b & ) ans = ans * a % MO;
a = a * a % MO;
b = b >> ;
}
return ans;
} inline LL S(LL x) {
x %= MO;
return x * (x + ) / % MO;
} inline LL G(LL x) {
x %= MO;
return (x << | ) % MO * (x + ) % MO * x % MO * inv6 % MO;
} inline LL H(LL x) {
LL temp = S(x);
return temp * temp % MO;
} inline void getp(int n) {
phi[] = ;
for(int i = ; i <= n; i++) {
if(!vis[i]) {
p[++top] = i;
phi[i] = i - ;
}
for(int j = ; j <= top && i * p[j] <= n; j++) {
vis[i * p[j]] = ;
if(i % p[j] == ) {
phi[i * p[j]] = phi[i] * p[j];
break;
}
phi[i * p[j]] = phi[i] * (p[j] - );
}
}
for(int i = ; i <= n; i++) {
F[i] = (F[i - ] + 1ll * i * i % MO * phi[i] % MO) % MO;
}
return;
} LL getF(LL x) {
if(x <= ) return ;
if(x <= T) return F[x];
if(mp.count(x)) return mp[x];
LL ans = H(x);
for(LL i = , j; i <= x; i = j + ) {
j = x / (x / i);
ans -= (G(j) - G(i - ) + MO) * getF(x / i) % MO;
ans %= MO;
}
return mp[x] = (ans + MO) % MO;
} int main() {
inv2 = (MO + ) / ;
inv6 = qpow(, MO - );
getp(T);
LL ans = , n;
scanf("%lld", &n);
for(LL i = , j; i <= n; i = j + ) {
j = n / (n / i);
ans += S(n / i) * (getF(j) - getF(i - ) + MO) % MO;
ans %= MO;
}
printf("%lld\n", (ans + MO) % MO);
return ;
}
AC代码
51nod1238 最小公倍数之和 V3的更多相关文章
- 51nod1238 最小公倍数之和 V3 莫比乌斯函数 杜教筛
题意:求\(\sum_{i = 1}^{n}\sum_{j = 1}^{n}lcm(i, j)\). 题解:虽然网上很多题解说用mu卡不过去,,,不过试了一下貌似时间还挺充足的,..也许有时间用phi ...
- [51nod1238]最小公倍数之和V3
来自FallDream的博客,未经允许,请勿转载,谢谢. ----------------------------------------------------------------------- ...
- 51nod1238 最小公倍数之和 V3(莫比乌斯反演)
题意 题目链接 Sol 不想打公式了,最后就是求一个 \(\sum_{i=1}^n ig(\frac{N}{i})\) \(g(i) = \sum_{i=1}^n \phi(i) i^2\) 拉个\( ...
- [51Nod1238]最小公倍数之和 V3[杜教筛]
题意 给定 \(n\) ,求 \(\sum_{i=1}^n \sum_{j=1}^n lcm(i,j)\). \(n\leq 10^{10}\) 分析 推式子 \[\begin{aligned} an ...
- 51nod1238. 最小公倍数之和 V3(数论)
题目链接 https://www.51nod.com/Challenge/Problem.html#!#problemId=1238 题解 本来想做个杜教筛板子题结果用另一种方法过了...... 所谓 ...
- [51nod1238] 最小公倍数之和 V3(杜教筛)
题面 传送门 题解 懒了--这里写得挺好的-- //minamoto #include<bits/stdc++.h> #define R register #define ll long ...
- 51NOD 1238 最小公倍数之和 V3 [杜教筛]
1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include < ...
- 51nod 1238 最小公倍数之和 V3
51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ ...
- 51 NOD 1238 最小公倍数之和 V3
原题链接 最近被51NOD的数论题各种刷……(NOI快到了我在干什么啊! 然后发现这题在网上找不到题解……那么既然A了就来骗一波访问量吧…… (然而并不怎么会用什么公式编辑器,写得丑也凑合着看吧…… ...
随机推荐
- CEPH Object Gateway
参考文档: CEPH OBJECT GATEWAY:http://docs.ceph.com/docs/master/radosgw/ 一.环境准备 1. Ceph Object Gateway框架 ...
- [linux] VirtualBox复制虚拟机
环境: Oracle VM VirtualBox 5.0.20 CentOS-6.7-x86_64-minimal.iso 1.复制虚拟机 -->右击休眠状态模板虚拟机,选择复制 -->填 ...
- js异步回调
简单理解:js是单线程的,Ajax请求远程数据.IO等会很耗时,引起堵塞可能会引起反应时间太长页面失去反应. 回调:A函数作为一个参数传给B函数,执行完B后再执行A: 同步回调: function A ...
- APP推广(预期方案)
首先,在推广过程中有一些定的弊端:我们这个O2O平台暂时只能适用于学校局域网. 因为我们的APP才刚刚“出炉”不久,在网络上还是属于一篇空白的状态,我们想过可以在百度百科上进行相应的推广,如果有用户搜 ...
- enumerate()函数用法
enumerate 函数用于遍历序列中的元素以及它们的下标:
- Microsoft Orleans构建高并发、分布式的大型应用程序框架
Microsoft Orleans 在.net用简单方法构建高并发.分布式的大型应用程序框架. 原文:http://dotnet.github.io/orleans/ 在线文档:http://dotn ...
- 查询部门----返回给前台TreeView数据格式的数据
实体类: public class AddressTreeDto { private Long id; private String text;//位置名称 private Long pId;//上一 ...
- CSS 居中(拿来主义自用)
居中是我们使用css来布局时常遇到的情况.使用css来进行居中时,有时一个属性就能搞定,有时则需要一定的技巧才能兼容到所有浏览器,本文就居中的一些常用方法做个简单的介绍. 注:本文所讲方法除了特别说明 ...
- WebAssembly是什么?
现在的JavaScript代码要进行性能优化,通常使用一些常规手段,如:延迟执行.预处理.setTimeout等异步方式避免处理主线程,高大上一点的会使用WebWorker.即使对于WebWorker ...
- 周刷题第二期总结(Longest Substring Without Repeating Characters and Median of Two Sorted Arrays)
这周前面刷题倒是蛮开心,后面出了很多别的事情和问题就去忙其他的,结果又只完成了最低目标. Lonest Substring Without Repeating Characters: Given a ...