Lucky Coins

题目连接:

http://acm.hdu.edu.cn/showproblem.php?pid=5985

Description

Bob has collected a lot of coins in different kinds. He wants to know which kind of coins is lucky. He finds out a lucky kind of coins by the following way. He tosses all the coins simultaneously, and then removes the coins that come up tails. He then tosses all the remaining coins and removes the coins that come up tails. He repeats the previous step until there is one kind of coins remaining or there are no coins remaining. If there is one kind of coins remaining, then this kind of coins is lucky. Given the number of coins and the probability that the coins come up heads after tossing for each kind, your task is to calculate the probability for each kind of coins that will be lucky.

Input

The first line is the number of test cases. For each test case, the first line contains an integer k representing the number of kinds. Each of the following k lines describes a kind of coins, which contains an integer and a real number representing the number of coins and the probability that the coins come up heads after tossing. It is guaranteed that the number of kinds is no more than 10, the total number of coins is no more than 1000000, and the probabilities that the coins come up heads after tossing are between 0.4 and 0.6.

Output

For each test case, output a line containing k real numbers with the precision of 6 digits, which are the probabilities of each kind of coins that will be lucky.

Sample Input

3

1

1000000 0.5

2

1 0.4

1 0.6

3

2 0.4

2 0.5

2 0.6

Sample Output

1.000000

0.210526 0.473684

0.124867 0.234823 0.420066

Hint

题意

有一堆硬币,每回合为正面的概率为P,每回合我们都会去掉当前翻面为反面的硬币。

问每种硬币剩到只剩下一个的概率是多少。

保证 0.4<P<0.6

题解:

给了概率的范围,显然这道题就是模拟扔就行了,随便扔个几十回合,这个概率就会降到很小的范围。

第i个硬币第j回合全死掉的概率为 (1-Pj)num[i]

活下来的概率当然是1-死掉的。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 15;
int n;
double num[maxn],ans[maxn],p[maxn];
double count_die(int x,int y){
return pow(1-pow(p[x],y),num[x]);
}
double count_live(int x,int y){
return 1-count_die(x,y);
}
void solve(){
scanf("%d",&n);
memset(ans,0,sizeof(ans));
for(int i=0;i<n;i++)
cin>>num[i]>>p[i];
if(n==1){
printf("1.000000\n");
return;
}
for(int i=1;i<100;i++){
for(int j=0;j<n;j++){
double tmp = 1;
for(int k=0;k<n;k++){
if(k==j)continue;
tmp*=count_die(k,i);
}
ans[j]+=(count_live(j,i)-count_live(j,i+1))*tmp;
}
}
for(int i=0;i<n;i++)
if(i==0)printf("%.6f",ans[i]);
else printf(" %.6f",ans[i]);
printf("\n");
}
int main(){
int t;
scanf("%d",&t);
while(t--)solve();
}

HDU 5985 Lucky Coins 数学的更多相关文章

  1. HDU 5985 Lucky Coins(概率)

    http://acm.split.hdu.edu.cn/showproblem.php?pid=5985 题意:有多种类型的硬币,每种类型的硬币都有一定的数量,现在每次抛硬币,除去朝下的硬币,知道最后 ...

  2. HDU.5985.Lucky Coins(概率DP)

    题目链接 \(Description\) 有n(n<=10)种硬币,已知每种硬币的数量和它抛一次正面朝上的概率pi.进行如下过程:每次抛一次所有硬币,将正面朝下的硬币去掉.重复该过程直到只剩一种 ...

  3. HDU 4937 Lucky Number (数学,进制转换)

    题目 参考自博客:http://blog.csdn.net/a601025382s/article/details/38517783 //string &replace(iterator fi ...

  4. poj3519 Lucky Coins Sequence矩阵快速幂

    Lucky Coins Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...

  5. Lucky Coins Sequence

    Lucky Coins Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...

  6. HDU 5985 概率

    n种硬币各有cnt[i]枚,每轮下其有p[i]概率保留,问各种硬币只有它存活到最后一轮的概率. 设k轮后i硬币存活概率$a[i][k]=(1-p^k_i)^{cnt[i]}$ 则最后只有第i种硬币存活 ...

  7. HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解)

    HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解) 题意分析 要先排序,在做01背包,否则不满足无后效性,为什么呢? 等我理解了再补上. 代码总览 #in ...

  8. HDU 5985/nowcoder 207D - Lucky Coins - [概率题]

    题目链接:https://www.nowcoder.com/acm/contest/207/D 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5985 ...

  9. 题解报告:hdu 1398 Square Coins(母函数或dp)

    Problem Description People in Silverland use square coins. Not only they have square shapes but also ...

随机推荐

  1. 连接Oracle时报错ORA-12541: TNS: 无监听程序

    从开始菜单中打开“Oracle Net Configuration Assistance”,选择“监听程序配置”,如下图所示,点击下一步.   选择“重新配置”,如下图所示,点击下一步.   选择监听 ...

  2. 一脸懵逼学习Java操作Excel之POI(Apache POI)

    Apache POI是Apache软件基金会的开放源码函式库,POI提供API给Java程序对Microsoft Office格式档案读和写的功能. 1:下面简单的程序来创建一个空白Microsoft ...

  3. 【Oracle】Linux7安装11g 86%报错:Error in invoking target 'agent nmhs' of makefile

    http://blog.itpub.net/29475508/viewspace-2120836/

  4. CentOS6 YUM安装MariaDB10.3.10

    1.先新增加一个MariaDB.repo vi /etc/yum.repos.d/MariaDB.repo [mariadb] name = MariaDB baseurl = http://mirr ...

  5. Echarts-各个配置项详细说明总结【转】

    1.图表标题 1 title: { 2 x: 'left', // 水平安放位置,默认为左对齐,可选为: 3 // 'center' ¦ 'left' ¦ 'right' 4 // ¦ {number ...

  6. TURN TAP: Temporal Unit Regression Network for Temporal Action Proposals(ICCV2017)

    Motivation 实现快速和准确地抽取出视频中的语义片段 Proposed Method -提出了TURN模型预测proposal并用temporal coordinate regression来 ...

  7. 第二种掌握的排序Q-Q

    #include<stdio.h> int main() {     int s[10000]={0};     int i=0,j=0,n=0,x=0;     scanf(" ...

  8. MVC5干货篇,目录和路由

    MVC目录结构概述 文件夹或文件 描述 备注 /App_Data 此文件夹用于存放私有数据,如XML,或者SQL Server Express\SQLite的数据库文件,或其他基于文件的存储库 IIS ...

  9. mousedown和click冲突事件

    鼠标事件,一般用button来区分鼠标的按键(DOM3标准规定: click事件只能监听左键, 只能通过mousedown和mouseup来判断鼠标键): 1.鼠标左键 button = 0 2.鼠标 ...

  10. Python学习(三十)—— Django框架简介

    转载自:http://www.cnblogs.com/liwenzhou/p/8296964.html Django框架简介 一.MVC框架和MTV框架(了解即可) MVC,全名是Model View ...