Lucky Coins

题目连接:

http://acm.hdu.edu.cn/showproblem.php?pid=5985

Description

Bob has collected a lot of coins in different kinds. He wants to know which kind of coins is lucky. He finds out a lucky kind of coins by the following way. He tosses all the coins simultaneously, and then removes the coins that come up tails. He then tosses all the remaining coins and removes the coins that come up tails. He repeats the previous step until there is one kind of coins remaining or there are no coins remaining. If there is one kind of coins remaining, then this kind of coins is lucky. Given the number of coins and the probability that the coins come up heads after tossing for each kind, your task is to calculate the probability for each kind of coins that will be lucky.

Input

The first line is the number of test cases. For each test case, the first line contains an integer k representing the number of kinds. Each of the following k lines describes a kind of coins, which contains an integer and a real number representing the number of coins and the probability that the coins come up heads after tossing. It is guaranteed that the number of kinds is no more than 10, the total number of coins is no more than 1000000, and the probabilities that the coins come up heads after tossing are between 0.4 and 0.6.

Output

For each test case, output a line containing k real numbers with the precision of 6 digits, which are the probabilities of each kind of coins that will be lucky.

Sample Input

3

1

1000000 0.5

2

1 0.4

1 0.6

3

2 0.4

2 0.5

2 0.6

Sample Output

1.000000

0.210526 0.473684

0.124867 0.234823 0.420066

Hint

题意

有一堆硬币,每回合为正面的概率为P,每回合我们都会去掉当前翻面为反面的硬币。

问每种硬币剩到只剩下一个的概率是多少。

保证 0.4<P<0.6

题解:

给了概率的范围,显然这道题就是模拟扔就行了,随便扔个几十回合,这个概率就会降到很小的范围。

第i个硬币第j回合全死掉的概率为 (1-Pj)num[i]

活下来的概率当然是1-死掉的。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 15;
int n;
double num[maxn],ans[maxn],p[maxn];
double count_die(int x,int y){
return pow(1-pow(p[x],y),num[x]);
}
double count_live(int x,int y){
return 1-count_die(x,y);
}
void solve(){
scanf("%d",&n);
memset(ans,0,sizeof(ans));
for(int i=0;i<n;i++)
cin>>num[i]>>p[i];
if(n==1){
printf("1.000000\n");
return;
}
for(int i=1;i<100;i++){
for(int j=0;j<n;j++){
double tmp = 1;
for(int k=0;k<n;k++){
if(k==j)continue;
tmp*=count_die(k,i);
}
ans[j]+=(count_live(j,i)-count_live(j,i+1))*tmp;
}
}
for(int i=0;i<n;i++)
if(i==0)printf("%.6f",ans[i]);
else printf(" %.6f",ans[i]);
printf("\n");
}
int main(){
int t;
scanf("%d",&t);
while(t--)solve();
}

HDU 5985 Lucky Coins 数学的更多相关文章

  1. HDU 5985 Lucky Coins(概率)

    http://acm.split.hdu.edu.cn/showproblem.php?pid=5985 题意:有多种类型的硬币,每种类型的硬币都有一定的数量,现在每次抛硬币,除去朝下的硬币,知道最后 ...

  2. HDU.5985.Lucky Coins(概率DP)

    题目链接 \(Description\) 有n(n<=10)种硬币,已知每种硬币的数量和它抛一次正面朝上的概率pi.进行如下过程:每次抛一次所有硬币,将正面朝下的硬币去掉.重复该过程直到只剩一种 ...

  3. HDU 4937 Lucky Number (数学,进制转换)

    题目 参考自博客:http://blog.csdn.net/a601025382s/article/details/38517783 //string &replace(iterator fi ...

  4. poj3519 Lucky Coins Sequence矩阵快速幂

    Lucky Coins Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...

  5. Lucky Coins Sequence

    Lucky Coins Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...

  6. HDU 5985 概率

    n种硬币各有cnt[i]枚,每轮下其有p[i]概率保留,问各种硬币只有它存活到最后一轮的概率. 设k轮后i硬币存活概率$a[i][k]=(1-p^k_i)^{cnt[i]}$ 则最后只有第i种硬币存活 ...

  7. HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解)

    HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解) 题意分析 要先排序,在做01背包,否则不满足无后效性,为什么呢? 等我理解了再补上. 代码总览 #in ...

  8. HDU 5985/nowcoder 207D - Lucky Coins - [概率题]

    题目链接:https://www.nowcoder.com/acm/contest/207/D 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5985 ...

  9. 题解报告:hdu 1398 Square Coins(母函数或dp)

    Problem Description People in Silverland use square coins. Not only they have square shapes but also ...

随机推荐

  1. 最新版谷歌浏览器的Flash设置已经不能保存了?

    解决方法:先去chrome实验室界面chrome://flags/#enable-ephemeral-flash-permission选择取消Disabled.取消该实验室选项. 然后去chrome: ...

  2. 最短路径算法之Dijkstra算法

    参考:<大话数据结构> 这是一个按照路径长度递增的次序产生最短路径的算法.它并不是一次求出源点到目标点的最短路径,而是一步步求出它们之间顶点的最短路径,过程中都是基于已经求出的最短路径的基 ...

  3. 发送Json数据,WebApi查看时为Null的问题(已解决)

     1. PostMan :发送请求的Body中选择form-data是不行的.,body中的内容也要选择raw json格式.   2.如果是代码中填写的对象,api中解析为null,说明字段的值未对 ...

  4. java中String和StringBuffer的区别

    前言 String和StringBuffer本质上都是修饰字符串的只是含义不同 StringBuffer叫做字符串缓冲区 首先看下string类的例子 public class Work1 { pub ...

  5. Adjoint operators $T_K$ and $T_{K^{*}}$ in BEM

    In our last article, we introduced four integral operators in the boundary integral equations in BEM ...

  6. django 文件下载

    1. 最简单下载:将文件流放入HttpResponse对象即可,适合小文件的下载,但如果这个文件非常大,这种方式会占用大量. 如: def file_download(request): # do s ...

  7. VM VirtualBox – Cannot register the hard disk

    第一打开VirtualBox 文件夹,在地址栏输入cmd 第二, 仔细读下面 VBoxManage.exe  internalcommands  sethduuid  "F:\Virtual ...

  8. BZOJ4589 Hard Nim FWT 快速幂 博弈

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ4589.html 题目传送门 - BZOJ4589 题意 有 $n$ 堆石子,每一堆石子的取值为 $2$ ...

  9. day70 cookie & session 前后端交互分页显示

    本文转载自qimi博客,cnblog.liwenzhou.com 概要: 我们的cookie是保存在浏览器中的键值对 为什么要有cookie? 我们在访问浏览器的时候,千万个人访问同一个页面,我们只要 ...

  10. Maya 常用环境变量详解

    Maya 常用环境变量详解 前言: Maya 的环境变量让用户可以很方便的自定义 Maya 的功能. 在 Maya 的 Help 帮助文档中有专门的一个章节< Environment Varia ...