import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#number 1 to 10 data
mnist = input_data.read_data_sets('MNIST_data',one_hot=True)

def compute_accuracy(v_xs,v_ys):
global prediction
y_pre = sess.run(prediction,feed_dict={xs:v_xs,keep_prob:1})
correct_prediction = tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
result = sess.run(accuracy,feed_dict={xs:v_xs,ys:v_ys,keep_prob:1})
return result
def weight_variable(shape):
initial = tf.truncated_normal(shape,stddev=0.1)
return tf.Variable(initial)

def bias_variable(shape):
initial = tf.constant(0.1,shape=shape)
return tf.Variable(initial)

def conv2d(x,W):
#stride[1,x_movement,y_movement,1]
#must have strides[0]=strides[3]=1
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')

def max_pool_2x2(x):
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

#define placeholder for inputs to network
xs = tf.placeholder(tf.float32,[None,784])#28x28
ys = tf.placeholder(tf.float32,[None,10])
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(xs,[-1,28,28,1])
# print(x_image.shape)#[n_samples,28,28,1]

##conv1 layer##
W_conv1 = weight_variable([5,5,1,32])#pathc 5x5,in size 1,out size 32
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)#output size 28x28x32
h_pool1 = max_pool_2x2(h_conv1) #output size 14x14x32

##conv2 layer##
W_conv2 = weight_variable([5,5,32,64])#pathc 5x5,in size 32,out size 64
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)#output size 14x14x64
h_pool2 = max_pool_2x2(h_conv2) #output size 7x7x64

##func1 layer##
W_fc1 = weight_variable([7*7*64,1024])
b_fc1 = bias_variable([1024])
#[n_sample,7,7,64]->>[n_sample,7*7*64]
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)
##func2 layer##
W_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)
#the error between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1]))#loss
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
sess = tf.Session()

#important step
sess.run(tf.global_variables_initializer())

for i in range(1000):
batch_xs,batch_ys = mnist.train.next_batch(100)
sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys,keep_prob:1})
if i%50 ==0:
print(compute_accuracy(mnist.test.images,mnist.test.labels))

莫烦tensorflow(8)-CNN的更多相关文章

  1. 莫烦tensorflow(9)-Save&Restore

    import tensorflow as tfimport numpy as np ##save to file#rember to define the same dtype and shape w ...

  2. 莫烦tensorflow(7)-mnist

    import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data#number 1 to 10 dat ...

  3. 莫烦tensorflow(6)-tensorboard

    import tensorflow as tfimport numpy as np def add_layer(inputs,in_size,out_size,n_layer,activation_f ...

  4. 莫烦tensorflow(5)-训练二次函数模型并用matplotlib可视化

    import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt def add_layer(inputs,in_siz ...

  5. 莫烦tensorflow(4)-placeholder

    import tensorflow as tf input1 = tf.placeholder(tf.float32)input2 = tf.placeholder(tf.float32) outpu ...

  6. 莫烦tensorflow(3)-Variable

    import tensorflow as tf state = tf.Variable(0,name='counter') one = tf.constant(1) new_value = tf.ad ...

  7. 莫烦tensorflow(2)-Session

    import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' import tensorflow as tfmatrix1 = tf.constant([[3,3] ...

  8. 莫烦tensorflow(1)-训练线性函数模型

    import tensorflow as tfimport numpy as np #create datax_data = np.random.rand(100).astype(np.float32 ...

  9. tensorflow学习笔记-bili莫烦

    bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as ...

随机推荐

  1. ACM-ICPC国际大学生程序设计竞赛北京赛区(2017)网络赛 题目9 : Minimum

    时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 You are given a list of integers a0, a1, …, a2^k-1. You need t ...

  2. S-DES算法实现(C++版本)

    密码学实验二: /** :;LaEaHKEEGpPXU7;, .:75pKH11252U252XapZgRQgD6XJscLr;,. :LXpRgGaX521JLw1JswJJsJs22XHPPEZE ...

  3. 【问题解决:信息提示】SpringBoot启动时提示The APR based Apache Tomcat Native library which allows optimal performance in production environments was not found on the java.library.path

    问题描述 springboot程序在启动时提示信息 [2018-10-24 21:59:05.214] - 440 信息 [restartedMain] --- org.apache.catalina ...

  4. 论文笔记:Dynamic Multimodal Instance Segmentation Guided by Natural Language Queries

    Dynamic Multimodal Instance Segmentation Guided by Natural Language Queries 2018-09-18 09:58:50 Pape ...

  5. Deep Dream 模型

    本节的代码参考了TensorFlow 源码中的示例程序https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/ ...

  6. C# winform 选择文件保存路径

    1.winform 点击按钮选择文件保存的路径,效果如下图: 具体代码如下: private void button8_Click(object sender, EventArgs e) { Fold ...

  7. 09.vue中样式-style

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. sony Z5P 刷rec、root的方法

    想root需要刷第三方recovery,刷recovery需要先解锁.但如果直接解锁,会丧失相机算法.屏幕超逼真模式,所以不能直接来. 大体步骤就是解完锁后自己做个内核刷进去,欺骗系统让他觉得没解锁. ...

  9. Windowsphone8外包团队——wp8控件学习资源整理

    一天一天学 windows phone 控件 之  Slider(十七) 摘要:Slider 是我们最常见的控件之一,看到最多的一般在两个地方 ,一个是声音的大小,一个是色域.控制声音大小的网上很多, ...

  10. CentOS7设置阿里镜像

    1. 备份原来的yum源 sudo cp /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.bak 2.设置ali ...