import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#number 1 to 10 data
mnist = input_data.read_data_sets('MNIST_data',one_hot=True)

def compute_accuracy(v_xs,v_ys):
global prediction
y_pre = sess.run(prediction,feed_dict={xs:v_xs,keep_prob:1})
correct_prediction = tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
result = sess.run(accuracy,feed_dict={xs:v_xs,ys:v_ys,keep_prob:1})
return result
def weight_variable(shape):
initial = tf.truncated_normal(shape,stddev=0.1)
return tf.Variable(initial)

def bias_variable(shape):
initial = tf.constant(0.1,shape=shape)
return tf.Variable(initial)

def conv2d(x,W):
#stride[1,x_movement,y_movement,1]
#must have strides[0]=strides[3]=1
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')

def max_pool_2x2(x):
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

#define placeholder for inputs to network
xs = tf.placeholder(tf.float32,[None,784])#28x28
ys = tf.placeholder(tf.float32,[None,10])
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(xs,[-1,28,28,1])
# print(x_image.shape)#[n_samples,28,28,1]

##conv1 layer##
W_conv1 = weight_variable([5,5,1,32])#pathc 5x5,in size 1,out size 32
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)#output size 28x28x32
h_pool1 = max_pool_2x2(h_conv1) #output size 14x14x32

##conv2 layer##
W_conv2 = weight_variable([5,5,32,64])#pathc 5x5,in size 32,out size 64
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)#output size 14x14x64
h_pool2 = max_pool_2x2(h_conv2) #output size 7x7x64

##func1 layer##
W_fc1 = weight_variable([7*7*64,1024])
b_fc1 = bias_variable([1024])
#[n_sample,7,7,64]->>[n_sample,7*7*64]
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)
##func2 layer##
W_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)
#the error between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1]))#loss
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
sess = tf.Session()

#important step
sess.run(tf.global_variables_initializer())

for i in range(1000):
batch_xs,batch_ys = mnist.train.next_batch(100)
sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys,keep_prob:1})
if i%50 ==0:
print(compute_accuracy(mnist.test.images,mnist.test.labels))

莫烦tensorflow(8)-CNN的更多相关文章

  1. 莫烦tensorflow(9)-Save&Restore

    import tensorflow as tfimport numpy as np ##save to file#rember to define the same dtype and shape w ...

  2. 莫烦tensorflow(7)-mnist

    import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data#number 1 to 10 dat ...

  3. 莫烦tensorflow(6)-tensorboard

    import tensorflow as tfimport numpy as np def add_layer(inputs,in_size,out_size,n_layer,activation_f ...

  4. 莫烦tensorflow(5)-训练二次函数模型并用matplotlib可视化

    import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt def add_layer(inputs,in_siz ...

  5. 莫烦tensorflow(4)-placeholder

    import tensorflow as tf input1 = tf.placeholder(tf.float32)input2 = tf.placeholder(tf.float32) outpu ...

  6. 莫烦tensorflow(3)-Variable

    import tensorflow as tf state = tf.Variable(0,name='counter') one = tf.constant(1) new_value = tf.ad ...

  7. 莫烦tensorflow(2)-Session

    import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' import tensorflow as tfmatrix1 = tf.constant([[3,3] ...

  8. 莫烦tensorflow(1)-训练线性函数模型

    import tensorflow as tfimport numpy as np #create datax_data = np.random.rand(100).astype(np.float32 ...

  9. tensorflow学习笔记-bili莫烦

    bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as ...

随机推荐

  1. php在cli模式下取得命令行中的参数的方法-getopt命令行可传递数组-简单自定义方法取命令行参数

    在cli模式下执行PHP时,自动给脚本文件传递了一个变量$argv,其值即是一个命令中所有值组成的数组(以空格区分),在PHP程序中接收参数有3种方法1.直接使用argv变量数组. 2.使用$_SER ...

  2. sublime Text 正则表达式功能使用介绍

    sublime Text 正则表达式功能使用介绍 1.打开sublime Text ,然后按 CTRL+H打开替换面板 2.如下图,勾选正则表达式功能,然后填上正则表达式和替换内容. 3.替换后结果如 ...

  3. freeswitch 修改系统最大呼叫量

    freeswitch 中有2个参数限制系统的最大呼叫量,以防止资源耗尽. max_session控制最大并发数.默认值1000:sps控制最大每秒呼叫量,默认值30 命令临时生效:fsctl max_ ...

  4. 【Mac AndroidStudio】download gradle fail问题

    第一次运行application时,会发现一直在download gradle,而且进度一直卡着.这时,可以直接拷贝download的链接,粘贴到浏览器下载.下载完了.然后,可以用命令行在用户目录下o ...

  5. SQL Server 第三章 结构化查询语言

    SQL脚本: create database electric; use electric go create table Salvaging( prj_no int primary key, prj ...

  6. Rancher2.0导入本地RKE Kubernetes集群图解

      简要说明: 使用RKE工具在192.168.3.161机器上,创建包含两个节点的Kubernetes集群,(192.168.3.162和192.168.3.163).RKE会自动在/home/用户 ...

  7. ATDD

    什么是ATDD 首先,ATDD不是一种测试方法论,而是一种开发方法论. UTDD涉及的人员仅仅是开发人员,那么ATDD仅仅涉及测试人员吗?不是,产品.开发.测试都需要参与到ATDD中来. 在ATDD活 ...

  8. Java ceil() 方法

    语法: double ceil(double d) double ceil(float f) 参数 double 或 float 的原生数据类型. 返回值 返回 double 类型,返回值大于或等于给 ...

  9. 雷林鹏分享:jQuery EasyUI 数据网格 - 列运算

    jQuery EasyUI 数据网格 - 列运算 在本教程中,您将学习如何在可编辑的数据网格(datagrid)中包含一个运算的列.一个运算列通常包含一些从一个或多个其他列运算的值. 首先,创建一个可 ...

  10. 『Python CoolBook』C扩展库_其一_用法讲解

    不依靠其他工具,直接使用Python的扩展API来编写一些简单的C扩展模块. 本篇参考PythonCookbook第15节和Python核心编程完成,值得注意的是,Python2.X和Python3. ...