以各个城市的天气为例, 先准备下面的数据:

印度天气的相关信息:

import pandas as pd
india_weather = pd.DataFrame({
'city': ['mumbai', 'delhi', 'banglore'],
'temperature': [32, 34, 30],
'humidity': [80, 60, 72]
})
india_weather

美国天气的相关信息:

us_weather = pd.DataFrame({
'city': ['newyork', 'chicago', 'orlando'],
'temperature': [21, 24, 32],
'humidity': [68, 65, 70]
})
us_weather

用 concat 组合上面两个 dataframe:

df = pd.concat([india_weather, us_weather])
df

输出:

上面的输出最左边的序列号是重复的, 原因是数据分别来自两个 dataframe 的索引值, 可以通过忽略原本的索引来做改变:

df = pd.concat([india_weather, us_weather], ignore_index=True)

输出:

下面再介绍另一种输出形式:

df = pd.concat([india_weather, us_weather], keys=['india', 'us'])

输出:

由于我们上面设置了关键字, 所以下面就可以利用这个关键字获取相关的信息:

df.loc['india']

输出:

从我们一系列的输出可以看出, 这些组合都是纵向的组合, 那么在实际应用中, 我们是经常需要做横向组合的, 比如下面的例子:

temperature_df = pd.DataFrame({
'city': ['newyork', 'chicago', 'orlando'],
'temperature': [21, 24, 32],
})
windspeed_df = pd.DataFrame({
'city': ['newyork', 'chicago', 'orlando'],
'temperature': [7, 12, 9],
})

横向组合:

df = pd.concat([temperature_df, windspeed_df], axis=1)

输出:

从目前的输出来看, 两组数据对应的很好, 同一个城市都在同一行上, 那如果我们把数据源改下:

windspeed_df = pd.DataFrame({
'city': ['chicago', 'newyork'],
'temperature': [12, 7],
})

我改动了关于风速的数据, 颠倒了城市的顺序, 还删掉了一个城市, 大家可以自己运行一下, 看到输出的结果有点乱了. 遇到这种情况, 我们可以通过给原数据加索引的方式, 来设置数据的排序:

temperature_df = pd.DataFrame({
'city': ['newyork', 'chicago', 'orlando'],
'temperature': [21, 24, 32],
}, index=[0, 1, 2]) windspeed_df = pd.DataFrame({
'city': ['chicago', 'newyork'],
'temperature': [12, 7],
}, index=[1, 0])

输出:

这样数据顺序就调好了.

下面再介绍一下 dataframe 与 series 的组合方式:

s = pd.Series(['Humidity', 'Dry', 'Rain'], name='event')

df = pd.concat([temperature_df, s], axis=1)

输出:

以上就是关于 concat 的组合数据的一些常用方法啦, 下节课会带来更劲爆的组合方法, enjoy~~~

Pandas 基础(8) - 用 concat 组合 dataframe的更多相关文章

  1. 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作

    一.reindex() 方法:重新索引 针对 Series   重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...

  2. 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍

    一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...

  3. 利用Python进行数据分析(12) pandas基础: 数据合并

    pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...

  4. numpy&pandas基础

    numpy基础 import numpy as np 定义array In [156]: np.ones(3) Out[156]: array([1., 1., 1.]) In [157]: np.o ...

  5. Pandas基础学习与Spark Python初探

    摘要:pandas是一个强大的Python数据分析工具包,pandas的两个主要数据结构Series(一维)和DataFrame(二维)处理了金融,统计,社会中的绝大多数典型用例科学,以及许多工程领域 ...

  6. python pandas 基础理解

    其实每一篇博客我都要用很多琐碎的时间片段来学完写完,每次一点点,用到了就学一点,学一点就记录一点,要用上好几天甚至一两个礼拜才感觉某一小类的知识结构学的差不多了. Pandas 是基于 NumPy 的 ...

  7. Pandas 基础(1) - 初识及安装 yupyter

    Hello, 大家好, 昨天说了我会再更新一个关于 Pandas 基础知识的教程, 这里就是啦......Pandas 被广泛应用于数据分析领域, 是一个很好的分析工具, 也是我们后面学习 machi ...

  8. 基于 Python 和 Pandas 的数据分析(2) --- Pandas 基础

    在这个用 Python 和 Pandas 实现数据分析的教程中, 我们将明确一些 Pandas 基础知识. 加载到 Pandas Dataframe 的数据形式可以很多, 但是通常需要能形成行和列的数 ...

  9. python学习笔记(四):pandas基础

    pandas 基础 serise import pandas as pd from pandas import Series, DataFrame obj = Series([4, -7, 5, 3] ...

随机推荐

  1. 学习完HTML后的5大测试题----9.18

    考试题目   第一题: 布局出该效果 提示:使用DIV的border样式,调整边框粗细出现该效果,保留上边框,其它三个方向的边框需设置:border-left:100px solid transpar ...

  2. python全栈开发 * 01知识点汇总 * 180530

    一 python简介. 1.创始人:  吉多 .范罗苏姆  \   (Guido van Rossum). 2.时间  :  1989年. 3.主要应用领域  :  云计算 \  WEB开发  \   ...

  3. RGBA与Opacity

    rgba(r,g,b,a) 都与透明度有关,rgba不会影响文字,opacity则会.

  4. AE实现拖拽

    http://edndoc.esri.com/arcobjects/9.2/net/63391c82-c2e6-4797-b2e6-2c1d92f56f44.htm http://help.arcgi ...

  5. list集合排序

    https:/blog.csdn.net/veryisjava/article/details/51675036 public static void main(String[] args) { Li ...

  6. [daily] fedora用过光盘做dnf repo

    有时候上不了网,或者你在一个网络下行受限的鬼地方上班.可是你需要给你的server装一个包. 这个时候,不妨用一下安装盘吧! 如下: 与redhat下用yum的时候,是一样一样的. 步骤如下: 1,插 ...

  7. Redis实战经验及使用场景

    随着应用对高性能需求的增加,NoSQL逐渐在各大名企的系统架构中生根发芽.这里我们将为大家分享社交巨头新浪微博.传媒巨头Viacom及图片分享领域佼佼者Pinterest带来的Redis实践,首先我们 ...

  8. 【Python全栈-JavaScript】JavaScript的window.onload()与jQuery 的ready()的区别

    JavaScript的window.onload()与jQuery 的ready()的区别 做web开发时常用Jquery中$(document).ready()和JavaScript中的window ...

  9. usb_camera

  10. Spring Boot 入门day01

    一.Spring Boot入门 1.Spring Boot简介 Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程.该框架使用了特 ...