定时任务APScheduler
安装 APScheduler
$ pip install apscheduler
快速开始
from apscheduler.schedulers.blocking import BlockingScheduler
scheduler = BlockingScheduler()
@scheduler.scheduled_job('cron', hour='8-23')
def request_update_status():
print('Doing job')
scheduler.start()
基本概念
APScheduler四大组件:
- 触发器
triggers
:用于设定触发任务的条件 - 任务储存器
job stores
:用于存放任务,把任务存放在内存或数据库中 - 执行器
executors
: 用于执行任务,可以设定执行模式为单线程或线程池 - 调度器
schedulers
: 把上方三个组件作为参数,通过创建调度器实例来运行
触发器
每一个任务都有自己的触发器,触发器用于决定任务下次运行的时间。
任务储存器
默认情况下,任务存放在内存中。也可以配置存放在不同类型的数据库中。如果任务存放在数据库中,那么任务的存取有一个序列化和反序列化的过程,同时修改和搜索任务的功能也是由任务储存器实现。
注!一个任务储存器不要共享给多个调度器,否则会导致状态混乱
执行器
任务会被执行器放入线程池或进程池去执行,执行完毕后,执行器会通知调度器。
调度器
一个调度器由上方三个组件构成,一般来说,一个程序只要有一个调度器就可以了。开发者也不必直接操作任务储存器、执行器以及触发器,因为调度器提供了统一的接口,通过调度器就可以操作组件,比如任务的增删改查。
调度器组件详解
根据开发需求选择相应的组件,下面是不同的调度器组件:
BlockingScheduler
阻塞式调度器:适用于只跑调度器的程序。BackgroundScheduler
后台调度器:适用于非阻塞的情况,调度器会在后台独立运行。AsyncIOScheduler
AsyncIO调度器,适用于应用使用AsnycIO的情况。GeventScheduler
Gevent调度器,适用于应用通过Gevent的情况。TornadoScheduler
Tornado调度器,适用于构建Tornado应用。TwistedScheduler
Twisted调度器,适用于构建Twisted应用。QtScheduler
Qt调度器,适用于构建Qt应用。
任务储存器的选择,要看任务是否需要持久化。如果你运行的任务是无状态的,选择默认任务储存器MemoryJobStore
就可以应付。但是,如果你需要在程序关闭或重启时,保存任务的状态,那么就要选择持久化的任务储存器。如果,作者推荐使用SQLAlchemyJobStore
并搭配PostgreSQL
作为后台数据库。这个方案可以提供强大的数据整合与保护功能。
执行器的选择,同样要看你的实际需求。默认的ThreadPoolExecutor
线程池执行器方案可以满足大部分需求。如果,你的程序是计算密集型的,那么最好用ProcessPoolExecutor
进程池执行器方案来充分利用多核算力。也可以将ProcessPoolExecutor
作为第二执行器,混合使用两种不同的执行器。
配置一个任务,就要设置一个任务触发器。触发器可以设定任务运行的周期、次数和时间。APScheduler有三种内置的触发器:
date
日期:触发任务运行的具体日期interval
间隔:触发任务运行的时间间隔cron
周期:触发任务运行的周期
一个任务也可以设定多种触发器,比如,可以设定同时满足所有触发器条件而触发,或者满足一项即触发。复合触发器,请查阅一下文档:链接
触发器详解
date 在指定时间点触发任务
from datetime import date
from apscheduler.schedulers.blocking import BlockingScheduler
sched = BlockingScheduler()
def my_job(text):
print(text)
# 在2009年11月6日执行
sched.add_job(my_job, 'date', run_date=date(2009, 11, 6), args=['text'])
sched.start()
其中run_date
参数可以是date类型、datetime类型或文本类型。
datetime类型(用于精确时间)
# 在2009年11月6日 16:30:05执行
sched.add_job(my_job, 'date', run_date=datetime(2009, 11, 6, 16, 30, 5), args=['text'])
文本类型
sched.add_job(my_job, 'date', run_date='2009-11-06 16:30:05', args=['text'])
未指定时间,则会立即执行
# 未显式指定,那么则立即执行
sched.add_job(my_job, args=['text'])
interval 周期触发任务
from datetime import datetime
from apscheduler.schedulers.blocking import BlockingScheduler
def job_function():
print("Hello World")
sched = BlockingScheduler()
# 每2小时触发
sched.add_job(job_function, 'interval', hours=2)
sched.start()
你可以框定周期开始时间start_date
和结束时间end_date
。
# 周期触发的时间范围在2010-10-10 9:30 至 2014-06-15 11:00
sched.add_job(job_function, 'interval', hours=2, start_date='2010-10-10 09:30:00', end_date='2014-06-15 11:00:00')
也可以通过scheduled_job()
装饰器实现
from apscheduler.scheduler import BlockingScheduler
@sched.scheduled_job('interval', id='my_job_id', hours=2)
def job_function():
print("Hello World")
jitter
振动参数,给每次触发添加一个随机浮动秒数,一般适用于多服务器,避免同时运行造成服务拥堵。
# 每小时(上下浮动120秒区间内)运行`job_function`
sched.add_job(job_function, 'interval', hours=1, jitter=120)
cron 强大的类crontab表达式
# 注意参数顺序
class apscheduler.triggers.cron.CronTrigger(
year=None,
month=None,
day=None,
week=None,
day_of_week=None,
hour=None,
minute=None,
second=None,
start_date=None,
end_date=None,
timezone=None,
jitter=None)
当省略时间参数时,在显式指定参数之前的参数会被设定为*
,之后的参数会被设定为最小值,week
和day_of_week
的最小值为*
。比如,设定day=1, minute=20
等同于设定year='*', month='*', day=1, week='*', day_of_week='*', hour='*', minute=20, second=0
,即每个月的第一天,且当分钟到达20时就触发。
表达式类型
表达式 | 参数类型 | 描述 |
---|---|---|
* |
所有 | 通配符。例:minutes=* 即每分钟触发 |
*/a |
所有 | 可被a整除的通配符。 |
a-b |
所有 | 范围a-b触发 |
a-b/c |
所有 | 范围a-b,且可被c整除时触发 |
xth y |
日 | 第几个星期几触发。x为第几个,y为星期几 |
last x |
日 | 一个月中,最后个星期几触发 |
last |
日 | 一个月最后一天触发 |
x,y,z |
所有 | 组合表达式,可以组合确定值或上方的表达式 |
注!
month
和day_of_week
参数分别接受的是英语缩写jan
–dec
和mon
–sun
from apscheduler.schedulers.blocking import BlockingScheduler
def job_function():
print "Hello World"
sched = BlockingScheduler()
# 任务会在6月、7月、8月、11月和12月的第三个周五,00:00、01:00、02:00和03:00触发
sched.add_job(job_function, 'cron', month='6-8,11-12', day='3rd fri', hour='0-3')
sched.start()
start_date
和 end_date
可以用来适用时间范围
# 在2014-05-30 00:00:00前,每周一到每周五 5:30运行
sched.add_job(job_function, 'cron', day_of_week='mon-fri', hour=5, minute=30, end_date='2014-05-30')
通过 scheduled_job()
装饰器实现:
@sched.scheduled_job('cron', id='my_job_id', day='last sun')
def some_decorated_task():
print("I am printed at 00:00:00 on the last Sunday of every month!")
使用标准crontab表达式:
sched.add_job(job_function, CronTrigger.from_crontab('0 0 1-15 may-aug *'))
也可以添加jitter
振动参数
# 每小时上下浮动120秒触发
sched.add_job(job_function, 'cron', hour='*', jitter=120)
夏令时问题
有些timezone
时区可能会有夏令时的问题。这个可能导致令时切换时,任务不执行或任务执行两次。避免这个问题,可以使用UTC
时间,或提前预知并规划好执行的问题。
# 在Europe/Helsinki时区, 在三月最后一个周一就不会触发;在十月最后一个周一会触发两次
sched.add_job(job_function, 'cron', hour=3, minute=30)
配置调度器
APScheduler 有多种不同的配置方法,你可以选择直接传字典或传参的方式创建调度器;也可以先实例一个调度器对象,再添加配置信息。灵活的配置方式可以满足各种应用场景的需要。
整套的配置选项可以参考API文档BaseScheduler
类。一些调度器子类可能有它们自己特有的配置选项,以及独立的任务储存器和执行器也可能有自己特有的配置选项,可以查阅API文档了解。
下面举一个例子,创建一个使用默认任务储存器和执行器的BackgroundScheduler
:
from apscheduler.schedulers.background import BackgroundScheduler
scheduler = BackgroundScheduler()
# 因为是非阻塞的后台调度器,所以程序会继续向下执行
这样就可以创建了一个后台调度器。这个调度器有一个名称为default
的MemoryJobStore
(内存任务储存器)和一个名称是default
且最大线程是10的ThreadPoolExecutor
(线程池执行器)。
假如你现在有这样的需求,两个任务储存器分别搭配两个执行器;同时,还要修改任务的默认参数;最后还要改时区。可以参考下面例子,它们是完全等价的。
- 名称为“mongo”的
MongoDBJobStore
- 名称为“default”的
SQLAlchemyJobStore
- 名称为“ThreadPoolExecutor ”的
ThreadPoolExecutor
,最大线程20个 - 名称“processpool”的
ProcessPoolExecutor
,最大进程5个 - UTC时间作为调度器的时区
- 默认为新任务关闭合并模式()
- 设置新任务的默认最大实例数为3
方法一:
from pytz import utc
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.jobstores.mongodb import MongoDBJobStore
from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore
from apscheduler.executors.pool import ThreadPoolExecutor, ProcessPoolExecutor
jobstores = {
'mongo': MongoDBJobStore(),
'default': SQLAlchemyJobStore(url='sqlite:///jobs.sqlite')
}
executors = {
'default': ThreadPoolExecutor(20),
'processpool': ProcessPoolExecutor(5)
}
job_defaults = {
'coalesce': False,
'max_instances': 3
}
scheduler = BackgroundScheduler(jobstores=jobstores, executors=executors, job_defaults=job_defaults, timezone=utc)
方法二:
from apscheduler.schedulers.background import BackgroundScheduler
# The "apscheduler." prefix is hard coded
scheduler = BackgroundScheduler({
'apscheduler.jobstores.mongo': {
'type': 'mongodb'
},
'apscheduler.jobstores.default': {
'type': 'sqlalchemy',
'url': 'sqlite:///jobs.sqlite'
},
'apscheduler.executors.default': {
'class': 'apscheduler.executors.pool:ThreadPoolExecutor',
'max_workers': '20'
},
'apscheduler.executors.processpool': {
'type': 'processpool',
'max_workers': '5'
},
'apscheduler.job_defaults.coalesce': 'false',
'apscheduler.job_defaults.max_instances': '3',
'apscheduler.timezone': 'UTC',
})
方法三:
from pytz import utc
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore
from apscheduler.executors.pool import ProcessPoolExecutor
jobstores = {
'mongo': {'type': 'mongodb'},
'default': SQLAlchemyJobStore(url='sqlite:///jobs.sqlite')
}
executors = {
'default': {'type': 'threadpool', 'max_workers': 20},
'processpool': ProcessPoolExecutor(max_workers=5)
}
job_defaults = {
'coalesce': False,
'max_instances': 3
}
scheduler = BackgroundScheduler()
# ..这里可以添加任务
scheduler.configure(jobstores=jobstores, executors=executors, job_defaults=job_defaults, timezone=utc)
启动调度器
启动调度器是只需调用start()
即可。除了BlockingScheduler
,非阻塞调度器都会立即返回,可以继续运行之后的代码,比如添加任务等。
对于BlockingScheduler
,程序则会阻塞在start()
位置,所以,要运行的代码必须写在start()
之前。
注!调度器启动后,就不能修改配置了。
添加任务
添加任务的方法有两种:
- 通过调用
add_job()
- 通过装饰器
scheduled_job()
第一种方法是最常用的;第二种方法是最方便的,但缺点就是运行时,不能修改任务。第一种add_job()
方法会返回一个apscheduler.job.Job
实例,这样就可以在运行时,修改或删除任务。
在任何时候你都能配置任务。但是如果调度器还没有启动,此时添加任务,那么任务就处于一个暂存的状态。只有当调度器启动时,才会开始计算下次运行时间。
还有一点要注意,如果你的执行器或任务储存器是会序列化任务的,那么这些任务就必须符合:
- 回调函数必须全局可用
- 回调函数参数必须也是可以被序列化的
内置任务储存器中,只有MemoryJobStore
不会序列化任务;内置执行器中,只有ProcessPoolExecutor
会序列化任务。
重要提醒!
如果在程序初始化时,是从数据库读取任务的,那么必须为每个任务定义一个明确的ID,并且使用replace_existing=True
,否则每次重启程序,你都会得到一份新的任务拷贝,也就意味着任务的状态不会保存。
建议
如果想要立刻运行任务,可以在添加任务时省略trigger
参数
移除任务
如果想从调度器移除一个任务,那么你就要从相应的任务储存器中移除它,这样才算移除了。有两种方式:
- 调用
remove_job()
,参数为:任务ID,任务储存器名称 - 在通过
add_job()
创建的任务实例上调用remove()
方法
第二种方式更方便,但前提必须在创建任务实例时,实例被保存在变量中。对于通过scheduled_job()
创建的任务,只能选择第一种方式。
当任务调度结束时(比如,某个任务的触发器不再产生下次运行的时间),任务就会自动移除。
job = scheduler.add_job(myfunc, 'interval', minutes=2)
job.remove()
同样,通过任务的具体ID:
scheduler.add_job(myfunc, 'interval', minutes=2, id='my_job_id')
scheduler.remove_job('my_job_id')
暂停和恢复任务
通过任务实例或调度器,就能暂停和恢复任务。如果一个任务被暂停了,那么该任务的下一次运行时间就会被移除。在恢复任务前,运行次数计数也不会被统计。
暂停任务,有以下两个方法:
apscheduler.job.Job.pause()
apscheduler.schedulers.base.BaseScheduler.pause_job()
恢复任务,
apscheduler.job.Job.resume()
apscheduler.schedulers.base.BaseScheduler.resume_job()
获取任务列表
通过get_jobs()
就可以获得一个可修改的任务列表。get_jobs()
第二个参数可以指定任务储存器名称,那么就会获得对应任务储存器的任务列表。
print_jobs()
可以快速打印格式化的任务列表,包含触发器,下次运行时间等信息。
修改任务
通过apscheduler.job.Job.modify()
或modify_job()
,你可以修改任务当中除了id
的任何属性。
比如:
job.modify(max_instances=6, name='Alternate name')
如果想要重新调度任务(就是改变触发器),你能通过apscheduler.job.Job.reschedule()
或reschedule_job()
来实现。这些方法会重新创建触发器,并重新计算下次运行时间。
比如:
scheduler.reschedule_job('my_job_id', trigger='cron', minute='*/5')
关闭调度器
关闭方法如下:
scheduler.shutdown()
默认情况下,调度器会先把正在执行的任务处理完,再关闭任务储存器和执行器。但是,如果你就直接关闭,你可以添加参数:
scheduler.shutdown(wait=False)
上述方法不管有没有任务在执行,会强制关闭调度器。
暂停、恢复任务进程
调度器可以暂停正在执行的任务:
scheduler.pause()
也可以恢复任务:
scheduler.resume()
同时,也可以在调度器启动时,默认所有任务设为暂停状态。
scheduler.start(paused=True)
限制任务执行的实例并行数
默认情况下,在同一时间,一个任务只允许一个执行中的实例在运行。比如说,一个任务是每5秒执行一次,但是这个任务在第一次执行的时候花了6秒,也就是说前一次任务还没执行完,后一次任务又触发了,由于默认一次只允许一个实例执行,所以第二次就丢失了。为了杜绝这种情况,可以在添加任务时,设置max_instances
参数,为指定任务设置最大实例并行数。
丢失任务的执行与合并
有时,任务会由于一些问题没有被执行。最常见的情况就是,在数据库里的任务到了该执行的时间,但调度器被关闭了,那么这个任务就成了“哑弹任务”。错过执行时间后,调度器才打开了。这时,调度器会检查每个任务的misfire_grace_time
参数int
值,即哑弹上限,来确定是否还执行哑弹任务(这个参数可以全局设定的或者是为每个任务单独设定)。此时,一个哑弹任务,就可能会被连续执行多次。
但这就可能导致一个问题,有些哑弹任务实际上并不需要被执行多次。coalescing
合并参数就能把一个多次的哑弹任务揉成一个一次的哑弹任务。也就是说,coalescing
为True
能把多个排队执行的同一个哑弹任务,变成一个,而不会触发哑弹事件。
注!如果是由于线程池/进程池满了导致的任务延迟,执行器就会跳过执行。要避免这个问题,可以添加进程或线程数来实现或把
misfire_grace_time
值调高。
调度器事件
调度器允许添加事件侦听器。部分事件会有特有的信息,比如当前运行次数等。add_listener(callback,mask)
中,第一个参数是回调对象,mask
是指定侦听事件类型,mask
参数也可以是逻辑组合。回调对象会有一个参数就是触发的事件。
具体可以查看文档中events
模块,里面有关于事件类型以及事件参数的详细说明。
def my_listener(event):
if event.exception:
print('The job crashed :(')
else:
print('The job worked :)')
# 当任务执行完或任务出错时,调用my_listener
scheduler.add_listener(my_listener, EVENT_JOB_EXECUTED | EVENT_JOB_ERROR)
事件类型
Constant | Description | Event class |
---|---|---|
EVENT_SCHEDULER_STARTED | The scheduler was started | SchedulerEvent |
EVENT_SCHEDULER_SHUTDOWN | The scheduler was shut down | SchedulerEvent |
EVENT_SCHEDULER_PAUSED | Job processing in the scheduler was paused | SchedulerEvent |
EVENT_SCHEDULER_RESUMED | Job processing in the scheduler was resumed | SchedulerEvent |
EVENT_EXECUTOR_ADDED | An executor was added to the scheduler | SchedulerEvent |
EVENT_EXECUTOR_REMOVED | An executor was removed to the scheduler | SchedulerEvent |
EVENT_JOBSTORE_ADDED | A job store was added to the scheduler | SchedulerEvent |
EVENT_JOBSTORE_REMOVED | A job store was removed from the scheduler | SchedulerEvent |
EVENT_ALL_JOBS_REMOVED | All jobs were removed from either all job stores or one particular job store | SchedulerEvent |
EVENT_JOB_ADDED | A job was added to a job store | JobEvent |
EVENT_JOB_REMOVED | A job was removed from a job store | JobEvent |
EVENT_JOB_MODIFIED | A job was modified from outside the scheduler | JobEvent |
EVENT_JOB_SUBMITTED | A job was submitted to its executor to be run | JobSubmissionEvent |
EVENT_JOB_MAX_INSTANCES | A job being submitted to its executor was not accepted by the executor because the job has already reached its maximum concurrently executing instances | JobSubmissionEvent |
EVENT_JOB_EXECUTED | A job was executed successfully | JobExecutionEvent |
EVENT_JOB_ERROR | A job raised an exception during execution | JobExecutionEvent |
EVENT_JOB_MISSED | A job’s execution was missed | JobExecutionEvent |
EVENT_ALL | A catch-all mask that includes every event type | N/A |
异常捕获
通过logging模块,可以添加apscheduler
日志至DEBUG
级别,这样就能捕获异常信息。
关于logging
初始化的方式如下:
import logging
logging.basicConfig()
logging.getLogger('apscheduler').setLevel(logging.DEBUG)
日志会提供很多调度器的内部运行信息。
文章参考链接:https://apscheduler.readthedocs.io/en/latest/index.html
作者:Nuance__
链接:https://www.jianshu.com/p/4f5305e220f0
来源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。
定时任务APScheduler的更多相关文章
- Pthon的定时任务APScheduler的启动与关闭
Pthon的定时任务APScheduler的启动与关闭 安装: sudo pip install apscheduler 使用: 直接运行Python文件即可,如 python XXX.py,XXX. ...
- python定时任务APScheduler
APScheduler定时任务 APScheduler 支持三种调度任务:固定时间间隔,固定时间点(日期),Linux 下的 Crontab 命令.同时,它还支持异步执行.后台执行调度任务. 一.基本 ...
- python 定时任务APScheduler 使用介绍
python 定时任务APScheduler 使用介绍 介绍: APScheduler的全称是Advanced Python Scheduler.它是一个轻量级的 Python 定时任务调度框架. ...
- python 学习定时任务apscheduler模块
最近在解决定时任务问题找到了apscheduler模块,贴一段代码 from apscheduler.schedulers.blocking import BlockingSchedulerimpor ...
- python 定时任务apscheduler的使用
apscheduler 的使用 我们项目中总是避免不了要使用一些定时任务,比如说最近的项目,用户点击报名考试以后需要在考试日期临近的时候推送小程序消息提醒到客户微信上,翻了翻 fastapi 中的 ...
- 全网最全的Windows下Anaconda2 / Anaconda3里正确下载安装用来定时任务apscheduler库(图文详解)
不多说,直接上干货! Anaconda2 里 PS C:\Anaconda2\Scripts> PS C:\Anaconda2\Scripts> pip.exe install apsc ...
- Python定时任务-schedule vs. Celery vs. APScheduler
在Python开发过程中我们经常需要执行定时任务,而此类任务我们通常有如下选项: 自己造轮子 使用schedule库 使用Celery定时任务 使用APScheduler 自己造轮子实现,最大的优势就 ...
- 全网最全的Windows下Anaconda2 / Anaconda3里Python语言实现定时发送微信消息给好友或群里(图文详解)
不多说,直接上干货! 缘由: (1)最近看到情侣零点送祝福,感觉还是很浪漫的事情,相信有很多人熬夜为了给爱的人送上零点祝福,但是有时等着等着就睡着了或者时间并不是卡的那么准就有点强迫症了,这是也许程序 ...
- Python定时任务框架APScheduler 3.0.3 Cron示例
APScheduler是基于Quartz的一个Python定时任务框架,实现了Quartz的所有功能,使用起来十分方便.提供了基于日期.固定时间间隔以及crontab类型的任务,并且可以持久化任务.基 ...
随机推荐
- 学习笔记TF042:TF.Learn、分布式Estimator、深度学习Estimator
TF.Learn,TensorFlow重要模块,各种类型深度学习及流行机器学习算法.TensorFlow官方Scikit Flow项目迁移,谷歌员工Illia Polosukhin.唐源发起.Scik ...
- 戴尔R710服务器安装系统——配置raid
一,内存二,硬盘(分区,数据量大小)三,电源线,网络线四,raid(raid0,raid1,raid5) 从这里开始 1.进入系统时不用管,默认进入即可 2.在读完内存消息之后,开始读取磁盘消息,在出 ...
- 使用outflux 导入influxdb 的数据到timescaledb
influxdb 以及timescaledb 都是不错的时序数据库,timescaledb 团队提供了直接从influxdb 导入 环境准备 docker-compose 文件 version: &q ...
- phpmyadmin nginx设置
1,解压缩phpmyadmin4.2.8压缩包到/usr/local/phpMyAdmin 2,复制config.sample.inc.php为config.inc.php 3,修改nginx.con ...
- ILBC 规范 2
接上篇 <ILBC 规范> https://www.cnblogs.com/KSongKing/p/10354824.html , ILBC 的 目标 是 跨平台 跨设备 ...
- python 文件读写模式r,r+,w,w+,a,a+的区别(附代码示例)
如下表 模式 可做操作 若文件不存在 是否覆盖 r 只能读 报错 - r+ 可读可写 报错 是 w 只能写 创建 是 w+ 可读可写 创建 是 a 只能写 创建 否,追加写 a+ 可读可写 创建 ...
- 对中断interrupt的理解
一.中断 线程的几种状态:新建.就绪.运行.阻塞.死亡.参考:线程的几种状态转换 线程的可运行状态并不代表线程一定在运行(runnable != running ) . 大家都知道:所有现代桌面和服务 ...
- SQL 语句 explain 分析
分析索引的效率: > EXPLAIN sql; EXPLAIN 分析的结果的表头如下: id | select_type | table | partitions | type | poss ...
- 【rabbitmq】Centos7 下安装rabbitmq
rabbitmq安装 rabbitmq的安装依赖erlang,首先应该先安装erlang,然后安装rabbitmq: Step1:安装erlang erlang-rpm安装教程 选择在Centos7 ...
- centos7 源码安装redis
安装3.x [root@node1 ~]# yum install wget gcc-c++ make [root@node1 ~]# wget http://download.redis.io/re ...