HMM模型学习笔记(维特比算法)
维特比算法(Viterbi)
维特比算法

- 如果概率最大的路径p(或者说最短路径)经过某个点,比如途中的X22,那么这条路径上的起始点S到X22的这段子路径Q,一定是S到X22之间的最短路径。否则,用S到X22的最短路径R替代Q,便构成一条比P更短的路径,这显然是矛盾的。证明了满足最优性原理。
- 从S到E的路径必定经过第i个时刻的某个状态,假定第i个时刻有k个状态,那么如果记录了从S到第i个状态的所有k个节点的最短路径,最终的最短路径必经过其中一条,这样,在任意时刻,只要考虑非常有限的最短路即可。

尝试用高中概率知识去理解一下 Veterbi 算法。内容绝对粗浅,100% 抄袭,欢迎指正。用一个别人家的栗子来说一下。
1.题目背景:
从前有个村儿,村里的人的身体情况只有两种可能:健康或者发烧。
假设这个村儿的人没有体温计或者百度这种神奇东西,他唯一判断他身体情况的途径就是到村头我的偶像金正月的小诊所询问。
月儿通过询问村民的感觉,判断她的病情,再假设村民只会回答正常、头晕或冷。
有一天村里奥巴驴就去月儿那去询问了。
第一天她告诉月儿她感觉正常。
第二天她告诉月儿感觉有点冷。
第三天她告诉月儿感觉有点头晕。
那么问题来了,月儿如何根据阿驴的描述的情况,推断出这三天中阿驴的一个身体状态呢?
为此月儿上百度搜 google ,一番狂搜,发现维特比算法正好能解决这个问题。月儿乐了。
2.已知情况:
隐含的身体状态 = { 健康 , 发烧 }
可观察的感觉状态 = { 正常 , 冷 , 头晕 }
月儿预判的阿驴身体状态的概率分布 = { 健康:0.6 , 发烧: 0.4 }
月儿认为的阿驴身体健康状态的转换概率分布 = {
健康->健康: 0.7 ,
健康->发烧: 0.3 ,
发烧->健康:0.4 ,
发烧->发烧: 0.6
}月儿认为的在相应健康状况条件下,阿驴的感觉的概率分布 = {
健康,正常:0.5 ,冷 :0.4 ,头晕: 0.1 ;
发烧,正常:0.1 ,冷 :0.3 ,头晕: 0.6
}
阿驴连续三天的身体感觉依次是: 正常、冷、头晕 。
3.题目:
已知如上,求:阿驴这三天的身体健康状态变化的过程是怎么样的?
4.过程:
根据 Viterbi 理论,后一天的状态会依赖前一天的状态和当前的可观察的状态。那么只要根据第一天的正常状态依次推算找出到达第三天头晕状态的最大的概率,就可以知道这三天的身体变化情况。
传不了图片,悲剧了。。。
1.初始情况:
- P(健康) = 0.6,P(发烧)=0.4。
2.求第一天的身体情况:
计算在阿驴感觉正常的情况下最可能的身体状态。
- P(今天健康) = P(正常|健康)*P(健康|初始情况) = 0.5 * 0.6 = 0.3
- P(今天发烧) = P(正常|发烧)*P(发烧|初始情况) = 0.1 * 0.4 = 0.04
那么就可以认为第一天最可能的身体状态是:健康。
3.求第二天的身体状况:
计算在阿驴感觉冷的情况下最可能的身体状态。
那么第二天有四种情况,由于第一天的发烧或者健康转换到第二天的发烧或者健康。
- P(前一天发烧,今天发烧) = P(前一天发烧)*P(发烧->发烧)*P(冷|发烧) = 0.04 * 0.6 * 0.3 = 0.0072
- P(前一天发烧,今天健康) = P(前一天发烧)*P(发烧->健康)*P(冷|健康) = 0.04 * 0.4 * 0.4 = 0.0064
- P(前一天健康,今天健康) = P(前一天健康)*P(健康->健康)*P(冷|健康) = 0.3 * 0.7 * 0.4 = 0.084
- P(前一天健康,今天发烧) = P(前一天健康)*P(健康->发烧)*P(冷|发烧) = 0.3 * 0.3 *.03 = 0.027
那么可以认为,第二天最可能的状态是:健康。
4.求第三天的身体状态:
计算在阿驴感觉头晕的情况下最可能的身体状态。
- P(前一天发烧,今天发烧) = P(前一天发烧)*P(发烧->发烧)*P(头晕|发烧) = 0.027 * 0.6 * 0.6 = 0.00972
- P(前一天发烧,今天健康) = P(前一天发烧)*P(发烧->健康)*P(头晕|健康) = 0.027 * 0.4 * 0.1 = 0.00108
- P(前一天健康,今天健康) = P(前一天健康)*P(健康->健康)*P(头晕|健康) = 0.084 * 0.7 * 0.1 = 0.00588
- P(前一天健康,今天发烧) = P(前一天健康)*P(健康->发烧)*P(头晕|发烧) = 0.084 * 0.3 *0.6 = 0.01512
那么可以认为:第三天最可能的状态是发烧。
5.结论
根据如上计算。这样月儿断定,阿驴这三天身体变化的序列是:健康->健康->发烧。
这个算法大概就是通过已知的可以观察到的序列,和一些已知的状态转换之间的概率情况,通过综合状态之间的转移概率和前一个状态的情况计算出概率最大的状态转换路径,从而推断出隐含状态的序列的情况。
转载自:https://www.cnblogs.com/Renyi-Fan/p/7865985.html
参考:https://zh.wikipedia.org/wiki/%E7%BB%B4%E7%89%B9%E6%AF%94%E7%AE%97%E6%B3%95
HMM模型学习笔记(维特比算法)的更多相关文章
- 条件随机场CRF(三) 模型学习与维特比算法解码
条件随机场CRF(一)从随机场到线性链条件随机场 条件随机场CRF(二) 前向后向算法评估标记序列概率 条件随机场CRF(三) 模型学习与维特比算法解码 在CRF系列的前两篇,我们总结了CRF的模型基 ...
- HMM模型学习笔记(前向算法实例)
HMM算法想必大家已经听说了好多次了,完全看公式一头雾水.但是HMM的基本理论其实很简单.因为HMM是马尔科夫链中的一种,只是它的状态不能直接被观察到,但是可以通过观察向量间接的反映出来,即每一个观察 ...
- 概率图模型学习笔记:HMM、MEMM、CRF
作者:Scofield链接:https://www.zhihu.com/question/35866596/answer/236886066来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商 ...
- HMM的学习笔记1:前向算法
HMM的学习笔记 HMM是关于时序的概率模型.描写叙述由一个隐藏的马尔科夫链随机生成不可观測的状态随机序列,再由各个状态生成不可观測的状态随机序列,再由各个状态生成一个观測而产生观測的随机过程. HM ...
- 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态 ...
- NIO模型学习笔记
NIO模型学习笔记 简介 Non-blocking I/O 或New I/O 自JDK1.4开始使用 应用场景:高并发网络服务器支持 概念理解 模型:对事物共性的抽象 编程模型:对编程共性的抽象 BI ...
- Pytorch线性规划模型 学习笔记(一)
Pytorch线性规划模型 学习笔记(一) Pytorch视频学习资料参考:<PyTorch深度学习实践>完结合集 Pytorch搭建神经网络的四大部分 1. 准备数据 Prepare d ...
- 隐马尔科夫模型(HMM)学习笔记二
这里接着学习笔记一中的问题2,说实话问题2中的Baum-Welch算法编程时矩阵转换有点烧脑,开始编写一直不对(编程还不熟练hh),后面在纸上仔细推了一遍,由特例慢慢改写才运行成功,所以代码里面好多处 ...
- 隐马尔可夫模型(HMM) 学习笔记
在中文标注时,除了条件随机场(crf),被提到次数挺多的还有隐马尔可夫(HMM),通过对<统计学习方法>一书的学习,我对HMM的理解进一步加深了. 第一部分 介绍隐马尔可夫 隐马尔可夫模型 ...
随机推荐
- IDEA里面添加lombok插件,编写简略风格Java代码(转)
文章转自http://blog.csdn.net/hinstenyhisoka/article/details/50468271 在 java平台上,lombok 提供了简单的注解的形式来帮助我们消除 ...
- SQL优化思路大全
一.百万级数据库优化方案 1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断 ...
- 常用zookeeper命令
服务管理 启动ZK服务: zkServer.sh start 查看ZK状态: zkServer.sh status 停止ZK服务: zkServer.sh stop 重启ZK服务: zkServer. ...
- PAT A1140 Look-and-say Sequence (20 分)——数学题
Look-and-say sequence is a sequence of integers as the following: D, D1, D111, D113, D11231, D112213 ...
- Android6.0权限大全和权限分类
本文转载至: https://blog.csdn.net/qq_26440221/article/details/53097868 自从出了Android6.0权限管理之后,再也不能像以前那样粘贴复制 ...
- LeetCode263:Ugly Number
public bool IsUgly(int num) { if(num<1) return false; while(num>1) { if(num%2==0) { num=num/2; ...
- CAN总线错误分析与解决
背景 写这篇文章是因为我看到网上介绍CAN总线错误处理的文章,清一色的都是生搬照抄教科书或是数据文档的内容,特别是国内很难找到一些有价值的内容,这让一些真正有需要的人很苦恼,包括我自己.这篇不打算对C ...
- AGC001E BBQ Hard 组合、递推
传送门 题意:给出长度为$N$的两个正整数序列$A_i,B_i$,求$\sum\limits_{i=1}^N \sum\limits_{j=i+1}^N C_{A_i+A_j+B_i+B_j}^{A_ ...
- Unexpected error from external database driver (1)
当尝试把Excel导入SQL时,发生此异常: Unexpected error from external database driver (1). 在网上查找到一个解决方法,网址http://dat ...
- 在angularjs实现一个时钟
想在网页上,显示当前系统时钟. <body ng-app="App2" ng-controller="Ctrl2"> <div ng-bind ...