85D Sum of Medians
题目
In one well-known algorithm of finding the k-th order statistics we should divide all elements into groups of five consecutive elements and find the median of each five. A median is called the middle element of a sorted array (it's the third largest element for a group of five). To increase the algorithm's performance speed on a modern video card, you should be able to find a sum of medians in each five of the array.
A sum of medians of a sorted k-element set S = {a1, a2, ..., ak}, where a1 < a2 < a3 < ... < ak, will be understood by as
The operator stands for taking the remainder, that is stands for the remainder of dividing x by y.
To organize exercise testing quickly calculating the sum of medians for a changing set was needed.
The first line contains number n (1 ≤ n ≤ 105), the number of operations performed.
Then each of n lines contains the description of one of the three operations:
- add x — add the element x to the set;
- del x — delete the element x from the set;
- sum — find the sum of medians of the set.
For any add x operation it is true that the element x is not included in the set directly before the operation.
For any del x operation it is true that the element x is included in the set directly before the operation.
All the numbers in the input are positive integers, not exceeding 109.
For each operation sum print on the single line the sum of medians of the current set. If the set is empty, print 0.
Please, do not use the %lld specificator to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams (also you may use the %I64d specificator).
题目大意
N个操作,add x:向集合中添加x;del x:删除集合中的x;sum:将集合排序后,将集合中所有下标i % 5 = 3的元素累加求和。
分析
首先,我们不难想出最基础思路,即在线段树上记录5个值,分别表示模5余i的位置的和。但是我们知道如果插入一个数x则他后面的数的位置必然集体加一,如果删除一个数则他后面的数的位置必然减一。所以我们在每一次插入或删除之后将此点之后区间的所有线段树节点的5个值交换一下即可。在有了大体思路之后我们再来考虑如何实现交换节点这一操作:我们将所有数离线读入并离散化,在每一次操作用rd数组记录此点是后移还是前移,所以某个节点的余数为i的值即为它的的左儿子余数为i的值+它的右儿子余数为(i-左儿子之后点在原有位置上集体移动的位数)的值。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
long long xx[],kd[],d[][],rd[],b[];
map<long long,long long>id;
inline long long read(){
long long x=,f=;char s=getchar();
while(s<''||s>''){if(s=='-')f=-;s=getchar();}
while(s>=''&&s<=''){x=(x<<)+(x<<)+(s-'');s=getchar();}
return f*x;
}
inline void update(long long le,long long ri,long long pl,long long k,long long wh,long long sum){
if(le==ri){
d[][wh]+=k;
rd[wh]+=sum;
return;
}
long long mid=(le+ri)>>;
if(mid>=pl)update(le,mid,pl,k,wh<<,sum);
else update(mid+,ri,pl,k,wh<<|,sum);
rd[wh]=rd[wh<<]+rd[wh<<|];
for(long long i=;i<;i++)
d[i][wh]=d[i][wh<<]+d[(i-rd[wh<<]%+)%][wh<<|];
}
int main()
{ long long n,m,i,j,tot=,sum=;
n=read();
for(i=;i<=n;i++){
string s;
cin>>s;
if(s[]=='a'){
kd[i]=;
xx[i]=read();
b[++tot]=xx[i];
}else if(s[]=='d'){
kd[i]=;
xx[i]=read();
}else kd[i]=;
}
sort(b+,b+tot+);
for(i=;i<=tot;i++)
if(!id[b[i]]){
id[b[i]]=++sum;
}
for(i=;i<=n;i++){
if(kd[i]<){
update(,n,id[xx[i]],(kd[i]==?xx[i]:-xx[i]),,(kd[i]==?:-));
}else printf("%lld\n",d[][]);
}
return ;
}
85D Sum of Medians的更多相关文章
- Codeforces 85D Sum of Medians(线段树)
题目链接:Codeforces 85D - Sum of Medians 题目大意:N个操作,add x:向集合中加入x:del x:删除集合中的x:sum:将集合排序后,将集合中全部下标i % 5 ...
- Codeforces 85D Sum of Medians
传送门 D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standa ...
- 数据结构(线段树):CodeForces 85D Sum of Medians
D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...
- CodeForces 85D Sum of Medians Splay | 线段树
Sum of Medians 题解: 对于这个题目,先想到是建立5棵Splay,然后每次更新把后面一段区间的树切下来,然后再转圈圈把切下来的树和别的树合并. 但是感觉写起来太麻烦就放弃了. 建立5棵线 ...
- CF 85D Sum of Medians (五颗线段树)
http://codeforces.com/problemset/problem/85/D 题意: 给你N(0<N<1e5)次操作,每次操作有3种方式, 1.向集合里加一个数a(0< ...
- codeforces 85D D. Sum of Medians 线段树
D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...
- codeforces 85D D. Sum of Medians Vector的妙用
D. Sum of Medians Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/prob ...
- Yandex.Algorithm 2011 Round 1 D. Sum of Medians 线段树
题目链接: Sum of Medians Time Limit:3000MSMemory Limit:262144KB 问题描述 In one well-known algorithm of find ...
- Coderforces 85 D. Sum of Medians(线段树单点修改)
D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...
随机推荐
- 剑指offer--20.矩形覆盖
链接:https://www.nowcoder.com/questionTerminal/72a5a919508a4251859fb2cfb987a0e6来源:牛客网 @DanielLea 思路分析: ...
- C程序设计语言阅读笔记
预处理器 ->.i 编译器 >.s 汇编器 >.o 链接器 --可执行文件 ------------------ math.h头文件包含各种数学函数的声明,所有函数都返回一个 ...
- scrapy入门实践1
Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架. 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中. 这就是整个Scrapy的架构图了: 各部件职能: Scrapy ...
- [独孤九剑]Oracle知识点梳理(四)SQL语句之DML和DDL
本系列链接导航: [独孤九剑]Oracle知识点梳理(一)表空间.用户 [独孤九剑]Oracle知识点梳理(二)数据库的连接 [独孤九剑]Oracle知识点梳理(三)导入.导出 [独孤九剑]Oracl ...
- 【模板】【学习笔记】noip数学
一.素数 欧拉筛 void prime(){ check[]=; ;i<=n;i++){ if(!check[i])prim[++cnt]=i;//这个if语句后面没有大括号!! ;j<= ...
- 基于JQ的多选/全选/反选及获取选中的值
<!-- author:青芒 --> <!DOCTYPE html> <html lang="en"> <head> <met ...
- C# 多线程参数传递
之前使用多线程的时候,基本没有遇到过参数传递的情况,最近,接连遇到需要进行参数传递的多线程的使用.每次都要重新上网查一下,太麻烦了.为了方便以后的使用,就把经常参阅的网上资料记录下来. 原文地址如下: ...
- Erlang pool management -- RabbitMQ worker_pool 2
上一篇已经分析了rpool 的三个module , 以及简单的物理关系. 这次主要分析用户进程和 worker_pool 进程还有worker_pool_worker 进程之间的调用关系. 在开始之前 ...
- Day2-VIM(一):移动
基础 字符移动 k 上移 k h 左移 h l l 右移 j j 下移 你也可以使用键盘上的方向键来移动,但这么做h j k l的存在就失去了意义 之所以使用h j k l来控制方向,其主要目的是让你 ...
- Java类与继承
Java:类与继承 对于面向对象的程序设计语言来说,类毫无疑问是其最重要的基础.抽象.封装.继承.多态这四大特性都离不开类,只有存在类,才能体现面向对象编程的特点,今天我们就来了解一些类与继承的相 ...