Luogu U15118 萨塔尼亚的期末考试(fail)
感觉...昨天是真的傻...
题意
T个询问,每个询问给一个n,求
$ \frac{\sum_{n}^{i = 1}Fib_{i} * i}{n * (n + 1) / 2} $
Fib是斐波那契数列,对998244353取模
然后...我昨天把n乘了之后就忘记取模了...
30分做法
设$ a_{i} = i * Fib_{i} $, 有$ a_{i} = a_{i - 1} + a_{i - 2} + Fib_{i - 1} + Fib_{i - 2} $,然后就写了一个5*5的转移矩阵,感觉很稳……
长这样:
\begin{bmatrix}
Fib_{i} & Fib{i - 1} & a_{i} & a_{i - 1} & sum_{i - 1}
\end{bmatrix}
转移矩阵长这样:
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 2 & 0 & 0\\
0 & 0 & 1 & 1 & 1\\
0 & 0 & 1 & 0 & 0\\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
虽然这个东西也过了几万组对拍,但是我喜闻乐见地把std也顺便写挂了(捂脸),所以这两个东西都只有10分...
Code:
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const ll mod = ; int testCase;
ll n; struct Matrix {
ll l1, l2, s[][]; inline void init() {
l1 = l2 = ;
memset(s, , sizeof(s));
} friend Matrix operator * (const Matrix a, const Matrix b) {
Matrix res;
res.init();
res.l1 = a.l1, res.l2 = b.l2;
for(int i = ; i < a.l1; i++)
for(int j = ; j < b.l2; j++)
for(int k = ; k < a.l2; k++)
res.s[i][j] = (res.s[i][j] + a.s[i][k] * b.s[k][j] % mod) % mod;
return res;
} inline Matrix pow(Matrix a, ll b) {
Matrix res = *this;
for(; b > ; b >>= ) {
if(b & ) res = res * a;
a = a * a;
}
return res;
} inline void print() {
for(int i = ; i < l1; i++, printf("\n"))
for(int j = ; j < l2; j++)
printf("%lld ", s[i][j]);
} } f; inline ll pow(ll x, ll y) {
ll res = ;
for(x %= mod; y > ; y >>= ) {
if(y & ) res = res * x % mod;
x = x * x % mod;
}
return res;
} inline ll solve() {
if(n == ) return 1LL;
if(n == ) return 3LL; Matrix g;
g.init();
g.l1 = , g.l2 = ;
g.s[][] = g.s[][] = g.s[][] = ;
g.s[][] = ;
g.s[][] = ;
// g.print(); g = g.pow(f, n - ); // g.print(); return g.s[][];
} int main() {
f.init();
f.l1 = f.l2 = ;
f.s[][] = f.s[][] = f.s[][] = ;
f.s[][] = f.s[][] = f.s[][] = f.s[][] = ;
f.s[][] = f.s[][] = ;//f.s[4][2] = 1;
f.s[][] = ; // f.print(); for(scanf("%d", &testCase); testCase--; ) {
scanf("%lld", &n);
ll tmp = n * (n + ) / ;
ll inv = pow(tmp, mod - );
ll sum = solve();
printf("%lld\n", inv * sum % mod);
}
return ;
}
100分做法
找规律题惹不起a...
$sum_{n} = n * Fib_{n + 2} - Fib_{n + 3} + 2$
所以就变成一个斐波那契了
并不能推导出来...
Code:
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const ll mod = ; int testCase;
ll n; struct Matrix {
ll s[][]; inline void init() {
memset(s, , sizeof(s));
} friend Matrix operator * (const Matrix a, const Matrix b) {
Matrix res;
res.init();
for(int i = ; i <= ; i++)
for(int j = ; j <= ; j++)
for(int k = ; k <= ; k++)
res.s[i][j] = (res.s[i][j] + a.s[i][k] * b.s[k][j] % mod) % mod;
return res;
} inline Matrix pow(ll b) {
Matrix res, a = *this;
res.init();
for(int i = ; i <= ; i++) res.s[i][i] = ;
for(; b > ; b >>= ) {
if(b & ) res = res * a;
a = a * a;
}
return res;
} } f; inline ll pow(ll a, ll b) {
ll res = ;
for(; b > ; b >>= ) {
if(b & ) res = res * a % mod;
a = a * a % mod;
}
return res;
} inline ll solve() {
Matrix res = f.pow(n + );
return (res.s[][] * n % mod - res.s[][] + + mod) % mod;
} int main() {
f.init();
f.s[][] = f.s[][] = f.s[][] = ;
for(scanf("%d", &testCase); testCase--; ) {
scanf("%lld", &n);
ll inv = pow((n * (n + ) / )% mod, mod - );
ll sum = solve();
// printf("%lld %lld\n", sum, inv);
printf("%lld\n", sum * inv % mod);
}
return ;
}
感觉还挺有趣的……
Luogu U15118 萨塔尼亚的期末考试(fail)的更多相关文章
- 萨塔尼亚的期末考试(fail)
题解: 这题比较妙啊... 首先暴力自己算是找不出规律的 有一种直觉就是可以把式子变成{f[1]+...f[n]}+{f[2]+...+f[n]}+{f[3]+...+f[n]}... 然后看了题解发 ...
- [luogu_U15118]萨塔尼亚的期末考试
https://zybuluo.com/ysner/note/1239615 题面 \(T\)次询问,求出\[\sum_{i=1}^n\frac{i}{\frac{n(n+1)}{2}}fib_i\] ...
- [luogu] P3745 [六省联考2017]期末考试 (贪心)
P3745 [六省联考2017]期末考试 题目描述 有 \(n\) 位同学,每位同学都参加了全部的 \(m\) 门课程的期末考试,都在焦急的等待成绩的公布. 第 \(i\) 位同学希望在第 \(t_i ...
- Vigenère Cipher 维吉尼亚加解密算法
维吉尼亚的加解密有两种方法. 第一种是查表:第一行为明文,第一列为密钥,剩余的为对应的密文 第二种方法是转化计算法:逐个将字符转化为从零开始的数字,对数字进行加密/解密后,再转化为字符. 本文要用c+ ...
- [加密]C#实现维吉尼亚加密与解密(解密前提为已知密匙)
using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...
- 随机练习:C#实现维吉尼亚加密与解密(解密前提为已知密匙)
using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...
- 维吉尼亚密码-攻防世界(shanghai)
维吉尼亚密码 维吉尼亚密码是使用一系列 凯撒密码 组成密码字母表的加密算法,属于多表密码的一种简单形式. 加密原理 维吉尼亚密码的前身,是我们熟悉的凯撒密码. 凯撒密码的加密方式是依靠一张字母表中的每 ...
- [CTF]维吉尼亚密码(维基利亚密码)
[CTF]维吉尼亚密码(维基利亚密码) ----------------------百度百科 https://baike.baidu.com/item/维吉尼亚密码/4905472?fr=aladdi ...
- 【Luogu】P3745期末考试(三分)
题目链接 我是怎么把“期末考试”在本地写成“假期计划”的 qwq???? 本题把学生和卷子都排个序,按出成绩最晚时间三分. 三分之后可以O(n)的时间统计答案,因为修改卷子出成绩的时间可以贪心计划. ...
随机推荐
- hive 遇到的问题及解决方法
org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.ipc.StandbyException): Operation category RE ...
- Jmeter基本组件
学习jmeter首先配置环境,使工具运行起来,然后需要了解该工具大致的内容,以下是写的Jmeter基本组件 1.添加线程组:右键点击“测试计划”-->“添加”-->“Threads(Use ...
- 基于RTP协议的H.264传输
1. 引言 随 着信息产业的发展,人们对信息资源的要求已经逐渐由文字和图片过渡到音频和视频,并越来越强调获取资源的实时性和互动性.但人们又面临着另外一种不可避免 的尴尬,就是在网络上看 ...
- Python+Apache+CGI完全配置
http://www.tuicool.com/articles/jIZfaqQ 操作系统环境:Ubuntu 15.10 0.需求原因 想在我的Linux上架设Apache来运行CGI程序,方便以后用A ...
- [转]HTMl中Meta标签详解以及meta property=og标签含义
meta是用来在HTML文档中模拟HTTP协议的响应头报文.META标签是HTML语言HEAD区的一个辅助性标签,它位于HTML文档头部的<HEAD>标记和<TITLE>标记之 ...
- Sentry深入
Sentry的架构 内部架构 核心就是规则引擎以及Metadata Store:记录格式有两种,一种policy file记录授权内容,另外一种是通过命令方式进行授权:前者记录在策略文件中,保存形式是 ...
- Python collections系列之计数器
计数器(counter) Counter是对字典(无序)类型的补充,用于追踪值的出现次数. 使用counter需要导入 collections 类 ps:具备字典的所有功能 + 自己的功能 1.创建一 ...
- Ubuntu 16.04 LTS制作本地源
平时apt-get install安装软件时,下载的deb文件都会存放在/var/cache/apt/archives/下,没有网络时就需要将这些deb制作成本地源.另外,如果在本机架一个简单的网络服 ...
- Python利用itchat库向好友或者公众号发消息
首先获得好友或者公众号的UserName 1.获取好友UserName #coding=utf8 import itchat itchat.auto_login(hotReload=True) #想给 ...
- springmvc 加载静态文件失败
header.jsp,部分代码 <head> <title>QA|VIS_PLATFORM</title> <meta content="width ...