p1129 [ZJOI2007]矩阵游戏
分析
不难想到将黑点的行列连边,然后判断最大匹配是否等于n
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
int g[][],n,t,used[],wh[],T,Ans;
inline bool work(int x){
for(int i=;i<=n;i++)
if(g[x][i]&&used[i]!=T){
used[i]=T;
if(!wh[i]||work(wh[i])){
wh[i]=x;
return ;
}
}
return ;
}
inline void go(){
for(int i=;i<=n;i++){
T++;
if(work(i))Ans++;
}
}
int main(){
int i,j,k;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
memset(wh,,sizeof(wh));
Ans=;
for(i=;i<=n;i++)
for(j=;j<=n;j++)scanf("%d",&g[i][j]);
go();
if(Ans==n)puts("Yes");
else puts("No");
}
return ;
}
p1129 [ZJOI2007]矩阵游戏的更多相关文章
- 洛谷 P1129 [ZJOI2007]矩阵游戏 解题报告
P1129 [ZJOI2007]矩阵游戏 题目描述 小\(Q\)是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏――矩阵游戏.矩阵游戏在一个\(N*N\)黑白方阵进行(如同国际象棋一般 ...
- 洛谷P1129 [ZJOI2007]矩阵游戏 题解
题目链接:https://www.luogu.org/problemnew/show/P1129 分析: 这道题不是很好想,但只要想的出来,代码不成问题. 思路1 举几个例子,我们发现, 对于任何数来 ...
- 洛谷 [P1129] [ZJOI2007] 矩阵游戏
这竟然是一道二分图 乍一看,可能是用搜索做,但是这个数据范围,一定会T. 我们观察发现,无论怎样变换,同一行的一定在同一行,同一列的一定还在同一列.所以说,一行只能配一列.这样,我们的目标就是寻找是否 ...
- Luogu P1129 [ZJOI2007]矩阵游戏
题目意思还是比较直观的,而且这个建模的套路也很明显. 我们首先考虑从主对角线可以转移到哪些状态. 由于每一次操作都不会把同一行(列)的黑色方块分开.因此我们发现: 只要找出\(n\)个黑色棋子,让它们 ...
- 洛谷P1129 [ZJOI2007] 矩阵游戏
题目传送门 分析:看到这题呢,首先想到的就是搜索,数据范围也不大嘛.但是仔细思考发现这题用搜索很难做,看了大佬们的题解后学到了,这一类题目要用二分图匹配来做.可以知道,如果想要的话,每一个子都可以移动 ...
- P1129 [ZJOI2007]矩阵游戏(二分图,网络流)
传送门 这推导过程真的有点可怕的说……完全想不出来…… 最终状态是$(1,1),(2,2),(3,3)...(n,n)$都有一个黑点 我们可以理解为每一个行和列都形成了一个匹配 换句话说,只要$n$行 ...
- P1129 [ZJOI2007]矩阵游戏 二分图匹配
思路:脑子+二分图匹配 提交:1次(课上讲过) 题解: 发现:如果符合题意,那么行和列一定是一一匹配的(必要条件),所以最大匹配必须是$n$. 同时我们发现,一定可以通过交换行列的方式,将(看起来)有 ...
- bzoj 1059: [ZJOI2007]矩阵游戏 二分图匹配
1059: [ZJOI2007]矩阵游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1891 Solved: 919[Submit][Statu ...
- BZOJ 1059 [ZJOI2007]矩阵游戏
1059: [ZJOI2007]矩阵游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2707 Solved: 1322[Submit][Stat ...
随机推荐
- rabbitmq_学习_01_rabbitmq安装
二.参考资料 1.RabbitMQ:windows10下安装 2.RabbitMQ系列(一):Windows下RabbitMQ安装及入门
- LeetCode OJ:Invert Binary Tree(反转二叉树)
Invert a binary tree. 4 / \ 2 7 / \ / \ 1 3 6 9 to 4 / \ 7 2 / \ / \ 9 6 3 1 Trivia:This problem was ...
- 如何安装Microsoft Visual C++6.0
Microsoft Visual C++6.0作为新手C语言编程软件,被大家广为使用,然而许多人为拷贝来的C++6.0安装包如何安装感到苦恼,因此许多同学都是以安装失败,安装不成 功而告终.接下来我就 ...
- HDU - 5730 :Shell Necklace(CDQ分治+FFT)
Perhaps the sea‘s definition of a shell is the pearl. However, in my view, a shell necklace with n b ...
- lower_bound()函数与quicksort()函数的简单掌握
lower_bound 这个序列中可能会有很多重复的元素,也可能所有的元素都相同,为了充分考虑这种边界条件,STL中的lower_bound算法总体上是才用了二分查找的方法,但是由于是查找序列中的第一 ...
- 电话圈(floyd)
题意: 如果两个人相互打电话,则说他们在同一个电话圈里.例如,a打给b,b打给c,c打给d,d打给a,则这4个人在同一个圈里:如果e打给f但f不打给e,则不能推出e和f在同一个电话圈里,输出所有电话圈 ...
- python的编解码问题
http://blog.chinaunix.net/uid-27838438-id-4227131.html
- django的工作图
- SVM模型进行分类预测时的参数调整技巧
一:如何判断调参范围是否合理 正常来说,当我们参数在合理范围时,模型在训练集和测试集的准确率都比较高:当模型在训练集上准确率比较高,而测试集上的准确率比较低时,模型处于过拟合状态:当模型训练集和测试集 ...
- mac下完全卸载mysql的方法
sudo rm /usr/local/mysqlsudo rm -rf /usr/local/mysql*sudo rm -rf /Library/StartupItems/MySQLCOMsudo ...