Description

A flowerbed has many flowers and two fountains.

You can adjust the water pressure and set any values r1(r1 ≥ 0) and r2(r2 ≥ 0), giving the distances at which the water is spread from the first and second fountain respectively. You have to set such r1 and r2 that all the flowers are watered, that is, for each flower, the distance between the flower and the first fountain doesn't exceed r1, or the distance to the second fountain doesn't exceed r2. It's OK if some flowers are watered by both fountains.

You need to decrease the amount of water you need, that is set such r1 and r2 that all the flowers are watered and the r12 + r22 is minimum possible. Find this minimum value.

Input

The first line of the input contains integers nx1, y1, x2, y2 (1 ≤ n ≤ 2000,  - 10^7 ≤ x1, y1, x2, y2 ≤ 10^7) — the number of flowers, the coordinates of the first and the second fountain.

Next follow n lines. The i-th of these lines contains integers xi and yi ( - 10^7 ≤ xi, yi ≤ 10^7) — the coordinates of the i-th flower.

It is guaranteed that all n + 2 points in the input are distinct.

Output

Print the minimum possible value r1^2 + r2^2. Note, that in this problem optimal answer is always integer.

Sample test(s)
input
2 -1 0 5 3
0 2
5 2
output
6
input
4 0 0 5 0
9 4
8 3
-1 0
1 4
output
33
Note

The first sample is (r1^2 = 5, r2^2 = 1):

The second sample is (r1^2 = 1, r22 = 3^2):

首先,我们保存每一个花坛与两个喷泉的距离(平方),记为r1 r2

我们以其中r1的第一个距离作为开始。开始往后面遍历,如果发现后面有距离超过起始点,说明有没有覆盖的

那么把超过点的放在r2的覆盖的范围内,加起来。遍历完毕取最小值

#include<stdio.h>
//#include<bits/stdc++.h>
#include<string.h>
#include<iostream>
#include<math.h>
#include<sstream>
#include<set>
#include<queue>
#include<map>
#include<vector>
#include<algorithm>
#include<limits.h>
#define inf 0x7fffffff
#define INFL 0x7fffffffffffffff
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define ULL unsigned long long
using namespace std;
pair<LL,LL> q[2002];
int main()
{
LL n,x1,y1,x2,y2;
LL x,y;
cin>>n>>x1>>y1>>x2>>y2;
for(int i=0;i<n;i++)
{
cin>>x>>y;
q[i+1].first=(x-x1)*(x-x1)+(y-y1)*(y-y1);
q[i+1].second=(x-x2)*(x-x2)+(y-y2)*(y-y2);
// cout<<q[i+1].first<<" "<<q[i+1].second<<endl;
}
LL sum=INFL;
for(int i=0;i<=n;i++)
{
LL ans_1,ans_2=0;
ans_1=q[i].first;
// cout<<q[i].first<<"A"<<endl;
for(int j=1;j<=n;j++)
{
if(q[j].first>ans_1)
{
ans_2=max(ans_2,q[j].second);
}
}
// cout<<ans_2<<"B"<<endl;
// cout<<ans_1+ans_2<<"C"<<endl;
sum=min(sum,ans_1+ans_2);
// cout<<sum<<"C"<<endl;
}
cout<<sum<<endl;
return 0;
}

  

Codeforces Round #340 (Div. 2) C的更多相关文章

  1. [Codeforces Round #340 (Div. 2)]

    [Codeforces Round #340 (Div. 2)] vp了一场cf..(打不了深夜的场啊!!) A.Elephant 水题,直接贪心,能用5步走5步. B.Chocolate 乘法原理计 ...

  2. Codeforces Round #340 (Div. 2) E. XOR and Favorite Number 莫队算法

    E. XOR and Favorite Number 题目连接: http://www.codeforces.com/contest/617/problem/E Descriptionww.co Bo ...

  3. Codeforces Round #340 (Div. 2) C. Watering Flowers 暴力

    C. Watering Flowers 题目连接: http://www.codeforces.com/contest/617/problem/C Descriptionww.co A flowerb ...

  4. Codeforces Round #340 (Div. 2) B. Chocolate 水题

    B. Chocolate 题目连接: http://www.codeforces.com/contest/617/problem/D Descriptionww.co Bob loves everyt ...

  5. Codeforces Round #340 (Div. 2) A. Elephant 水题

    A. Elephant 题目连接: http://www.codeforces.com/contest/617/problem/A Descriptionww.co An elephant decid ...

  6. Codeforces Round #340 (Div. 2) D. Polyline 水题

    D. Polyline 题目连接: http://www.codeforces.com/contest/617/problem/D Descriptionww.co There are three p ...

  7. 「日常训练」Watering Flowers(Codeforces Round #340 Div.2 C)

    题意与分析 (CodeForces 617C) 题意是这样的:一个花圃中有若干花和两个喷泉,你可以调节水的压力使得两个喷泉各自分别以\(r_1\)和\(r_2\)为最远距离向外喷水.你需要调整\(r_ ...

  8. Codeforces Round #340 (Div. 2) E. XOR and Favorite Number 【莫队算法 + 异或和前缀和的巧妙】

    任意门:http://codeforces.com/problemset/problem/617/E E. XOR and Favorite Number time limit per test 4 ...

  9. Codeforces Round #340 (Div. 2) E. XOR and Favorite Number —— 莫队算法

    题目链接:http://codeforces.com/problemset/problem/617/E E. XOR and Favorite Number time limit per test 4 ...

  10. Codeforces Round #340 (Div. 2) E. XOR and Favorite Number (莫队)

    题目链接:http://codeforces.com/contest/617/problem/E 题目大意:有n个数和m次查询,每次查询区间[l, r]问满足ai ^ ai+1 ^ ... ^ aj ...

随机推荐

  1. ssh框架搭建实例代码教程步骤

    http://blog.csdn.net/u010539352/article/details/49255729

  2. 并发之AtomicInteger

    并发之AtomicInteger 1 java.util.concurrent.atomic概要     在java.util.concurrent.atomic包下存在着18个类,其中Integer ...

  3. JavaScript的作用域与闭包

    JavaScript的作用域以函数为界,不同的函数拥有相对独立的作用域.函数内部可以声明和访问全局变量,也可以声明局部变量(使用var关键字,函数的参数也是局部变量),但函数外部无法访问内部的局部变量 ...

  4. ROS探索总结(二)——ROS总体框架

    个人分类: ROS 所属专栏: ROS探索总结   一.  总体结构        根据ROS系统代码的维护者和分布来标示,主要有两大部分:      (1)main:核心部分,主要由Willow G ...

  5. Tensorflow学习练习-卷积神经网络应用于手写数字数据集训练

    # coding: utf-8 import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data mn ...

  6. 3DPDF是个什么东西?

    就是可以把3D模型放入到PDF中,然后客户可以直接用adobe reader查看这个PDF.经过搜索发现,大多数PDF编辑软件都没有直接把3D模型插入到PDF中的功能. 很多是3D软件自身提供的,比如 ...

  7. 算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-001分析步骤

    For many programs, developing a mathematical model of running timereduces to the following steps:■De ...

  8. 杭电ACM刷题(1):1002,A + B Problem II 标签: acmc语言 2017-05-07 15:35 139人阅读 评

    最近忙于考试复习,没有多少可供自己安排的时间,所以我利用复习之余的空闲时间去刷刷杭电acm的题目,也当对自己编程能力的锻炼吧. Problem Description I have a very si ...

  9. Luogu 3629 [APIO2010]巡逻

    先考虑$k = 1$的情况,很明显每一条边都要被走两遍,而连成一个环之后,环上的每一条边都只要走一遍即可,所以我们使这个环的长度尽可能大,那么一棵树中最长的路径就是树的直径. 设直径的长度为$L$,答 ...

  10. C++笔记--名字空间和异常

    名字空间 成员函数可以在名字空间的定义里去声明,然后再去采用一种定义方式例如:namespace__name::member_name的方式去定义这个成员函数 namespace parser{ do ...