poj3713 Transferring Sylla 枚举+tarjan判割点
其实就是判断是否为三连通图
三连通图指的是去掉3个点就不连通的图,但是并没有直接求三连通的算法。著名的Tarjan算法可以求解连通和割点,再枚举删除一个点就能达到三连通的目的。
先看用例2,是由用例1去掉一条边而变成非三连通图的:
至少造成了2和3非三连通:
我们来思考如何推导出2和3非三连通,假设从上图中删除了节点0,通过Tarjan算法,我们可以发现节点1是割点:
那么只需删除从3到割点和从3到我们枚举删除的节点0的两条边,就可以将3和2分割开来:
才删除了两条边2和3就不连通了,这个图显然不是三连通图。
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
const int maxn = ;
int cnt,flag,times,del,root;
int head[maxn],low[maxn],dfn[maxn];
struct no
{
int v,next;
}Eg[*maxn];
void init( )
{
cnt=;
memset(head,-,sizeof(head));
}
void add(int form,int to)
{
Eg[cnt].v=to;Eg[cnt].next=head[form];head[form]=cnt++;
}
void dfs(int u,int fa)
{
if(flag)
return ;
int tot=;
low[u] = dfn[u] = ++times;
for(int i=head[u] ; i!=- ; i=Eg[i].next)
{
int v=Eg[i].v;
if(v==fa||v==del)
continue;
if(!dfn[v])
{
tot++;
dfs(v,u);
low[u]=min(low[u],low[v]);
//判断割点
if((u==root&&tot>)||(u!=root&&low[v]>=dfn[u]))
flag=;
}
else
low[u]=min(low[u],dfn[v]);
}
}
int main( )
{
int n,m;
while(scanf("%d%d",&n,&m)!=EOF)
{
if(n==&&m==)
break;
init();
for(int i= ; i<m ; i++)
{
int u,v;
scanf("%d%d",&u,&v);
add(u,v);
add(v,u);
}
flag=;
for(int i= ; i<n ; i++)
{
del = i ; times = ;
memset(dfn,,sizeof(dfn));
root = ;
if(del==)
root=;
dfn[del] = ;
dfs(root,-);
for(int j= ; j<n ; j++)
{
if(!dfn[j])
{
flag=;
break;
}
}
if(flag)
break;
}
if(flag)
puts("NO");
else
puts("YES");
}
return ; }
poj3713 Transferring Sylla 枚举+tarjan判割点的更多相关文章
- POJ 3713 Transferring Sylla【Tarjan求割点】
题意:给出一个无向图,判断是否任意两点间都存在至少3条互相独立的路,独立指公共顶点只有起点和终点.算法:枚举每个点,删去后用Tarjan判断图中是否存在割点,如果存在则该图不满足三连通性.Tarjan ...
- 【bzoj1123】【[POI2008]BLO】tarjan判割点
(上不了p站我要死了,侵权度娘背锅) Description Byteotia城市有n个 towns m条双向roads. 每条 road 连接 两个不同的 towns ,没有重复的road. 所有t ...
- poj Transferring Sylla(怎样高速的推断一个图是否是3—连通图,求割点,割边)
Transferring Sylla 首先.什么是k连通图? k连通图就是指至少去掉k个点使之不连通的图. 题目: 题目描写叙述的非常裸.就是给你一张图要求你推断这图是否是3-连通图. 算法分析: / ...
- UESTC 900 方老师炸弹 --Tarjan求割点及删点后连通分量数
Tarjan算法. 1.若u为根,且度大于1,则为割点 2.若u不为根,如果low[v]>=dfn[u],则u为割点(出现重边时可能导致等号,要判重边) 3.若low[v]>dfn[u], ...
- [POJ1144][BZOJ2730]tarjan求割点
求割点 一种显然的n^2做法: 枚举每个点,去掉该点连出的边,然后判断整个图是否联通 用tarjan求割点: 分情况讨论 如果是root的话,其为割点当且仅当下方有两棵及以上的子树 其他情况 设当前节 ...
- 洛谷P3388 【模板】割点(割顶)(tarjan求割点)
题目背景 割点 题目描述 给出一个n个点,m条边的无向图,求图的割点. 输入输出格式 输入格式: 第一行输入n,m 下面m行每行输入x,y表示x到y有一条边 输出格式: 第一行输出割点个数 第二行按照 ...
- POJ 3713 Transferring Sylla (三联通分量)
Transferring Sylla Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3533 Accepted: 988 ...
- 图论分支-Tarjan初步-割点和割边
所谓割点(顶)割边,我们引进一个概念 割点:删掉它之后(删掉所有跟它相连的边),图必然会分裂成两个或两个以上的子图. 割边(桥):删掉一条边后,图必然会分裂成两个或两个以上的子图,又称桥. 这样大家就 ...
- UOJ67 新年的毒瘤【Tarjan,割点】
Online Judge:#uoj 67 Label:Tarjan,割点,细节 题目描述 辞旧迎新之际,喜羊羊正在打理羊村的绿化带,然后他发现了一棵长着毒瘤的树.这个长着毒瘤的树可以用\(n\)个结点 ...
随机推荐
- UML在实践中的现状和一些建议
本文是我在csdn上看到的文章,由于认识中的共鸣,摘抄至此. 原文地址:http://blog.csdn.net/vrman/article/details/280157 UML在国内不少地方获得了应 ...
- scp命令 跨服务器传输
scp命令用于在Linux下进行远程拷贝文件的命令,和它类似的命令有cp,不过cp只是在本机进行拷贝不能跨服务器,而且scp传输是加密的.可能会稍微影响一下速度.当你服务器硬盘变为只读read onl ...
- LINUX oracle dbca无法启动
LINUX操作系统中执行DBCA无法启动 方法:执行以下命令后再执行DBCA xhost +
- solr :term 查询, phrase查询, boolean 查询
搜索总体有:term 查询, phrase查询, boolean 查询 1. SOLR搜索覆盖度和准确度保证的三个搜索方式: 保证准确率: AND: Search for two different ...
- CentOS 7 下设置DNS
在CentOS 7下,手工设置 /etc/resolv.conf 里的DNS,过了一会,发现被系统重新覆盖或者清除了.和CentOS 6下的设置DNS方法不同,有几种方式: 1.使用全新的命令行工具 ...
- Swing事件机制
-------------siwuxie095 Swing 是基于 MVC 结构的框架 在 Swing 中,所有的用户操作都是基于 Co ...
- C++面向对象类的实例题目十一
题目描述: 写一个程序计算三角形,正方形和圆形3种图形的面积 程序代码: #include<iostream> #include<cmath> #define PAI 3.14 ...
- ==, equals, hashcode的理解
一.java对象的比较 等号(==): 对比对象实例的内存地址(也即对象实例的ID),来判断是否是同一对象实例:又可以说是判断对象实例是否物理相等: equals(): 对比两个对象实例是否相等. 当 ...
- Linux 编译安装内核
一.简介 内核,是一个操作系统的核心.它负责管理系统的进程.内存.设备驱动程序.文件和网络系统,决定着系统的性能和稳定性.Linux作为一个自由软件,在广大爱好者的支持下,内核版本不断更新.新的内核修 ...
- cximage使用
为什么使用CxImage u 使用简单:下面的入门教程会给你展示这一点. 构造函数 初始化 多帧图像操作 区域选择操作 Alpha通道操作 Layers 图像层操作 Attributes 图像属性操作 ...