看见某大佬在做,决定补一发题解$qwq$


首先跑出最大生成树(注意有可能不连通),然后我们要求的就是树上两点间路径上的最小边权。 我们用倍增的思路跑出来$w[u][j]$,表示$u$与的它$2^j$的祖先路径上的最小边权(其实是为了配合$lca$),然后求$lca$时顺便记一下最小边权。

码风清奇别在意是之前写的

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#define R register int
using namespace std;
namespace jack {
#define N 100010
#define M 500010
#define Inf 0x3f3f3f3f
int n,m,q,cnt,lim,fir[N],dep[N],f[N][],w[N][],fa[N];
bool vis[N];
struct Edge {
int u,v,w;
bool operator < (const Edge& y)const{return w>y.w;}
}E[M];
struct edge {int v,w,nxt;}e[M];
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=(ret<<)+(ret<<)+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
//inline int min(int a,int b) {return a<b?a:b;}
inline void add(int u,int v,int w) {e[++cnt].v=v,e[cnt].w=w,e[cnt].nxt=fir[u],fir[u]=cnt;}
int getf(int x) {return x==fa[x]?x:fa[x]=getf(fa[x]);}
inline bool merge(int u,int v) {
R uf=getf(u),vf=getf(v);
if(uf==vf) return true;
fa[uf]=vf; return false;
}
inline void kruskal() {
sort(E+,E+m+);
for(R i=;i<=n;i++) fa[i]=i;
for(R i=,u=E[i].u,v=E[i].v,w=E[i].w;i<=m;i++,u=E[i].u,v=E[i].v,w=E[i].w)
if(!merge(u,v)) {add(u,v,w),add(v,u,w);}
}
void dfs(int u) {
vis[u]=true;
for(R i=fir[u];i;i=e[i].nxt) {
R v=e[i].v; if(dep[v]) continue;
dep[v]=dep[u]+;f[v][]=u,w[v][]=e[i].w;
for(R j=,fa=u;f[fa][j];j++) f[v][j+]=f[fa][j],fa=f[fa][j];
dfs(v);
}
}
inline int lca(int u,int v) {
if(getf(u)!=getf(v)) return -; R ans=Inf;
if(dep[u]<dep[v]) swap(u,v);
for(R i=lim;i>=;i--) if(dep[f[u][i]]>=dep[v]) ans=min(ans,w[u][i]),u=f[u][i];
if(u==v) return ans;
for(R i=lim;i>=;i--) if(f[u][i]!=f[v][i]) ans=min(ans,min(w[u][i],w[v][i])),u=f[u][i],v=f[v][i];
return min(ans,min(w[u][],w[v][]));
}
void main() {
n=g(),m=g(); lim=log2(n)+;
for(R i=;i<=m;i++) {E[i].u=g(),E[i].v=g(),E[i].w=g();}
kruskal();
for(R i=;i<=n;i++) if(!vis[i]) {dep[i]=;dfs(i);f[i][]=i,w[i][]=Inf;}
for(R i=;i<=lim;i++) for(R j=;j<=n;j++) {
f[j][i]=f[f[j][i-]][i-];
w[j][i]=min(w[j][i-],w[f[j][i-]][i-]);
} q=g();
for(int i=; i<=q; i++) {R u=g(),v=g(); printf("%d\n",lca(u,v));}
}
} signed main() {jack::main();}

Luogu P1967 货车运输 倍增+最大生成树的更多相关文章

  1. 洛谷P3379lca,HDU2586,洛谷P1967货车运输,倍增lca,树上倍增

    倍增lca板子洛谷P3379 #include<cstdio> struct E { int to,next; }e[]; ],anc[][],log2n,deep[],n,m,s,ne; ...

  2. Luogu P1967 货车运输(Kruskal重构树)

    P1967 货车运输 题面 题目描述 \(A\) 国有 \(n\) 座城市,编号从 \(1\) 到 \(n\) ,城市之间有 \(m\) 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 \ ...

  3. LUOGU P1967 货车运输(最大生成树+树剖+线段树)

    传送门 解题思路 货车所走的路径一定是最大生成树上的路径,所以先跑一个最大生成树,之后就是求一条路径上的最小值,用树剖+线段树,注意图可能不连通.将边权下放到点权上,但x,y路径上的lca的答案不能算 ...

  4. [洛谷 P1967] 货车运输 (最大生成树 lca)

    题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最多 ...

  5. 洛谷P1967货车运输——倍增LCA

    题目:https://www.luogu.org/problemnew/show/P1967 就是倍增LCA的裸题,注意一些细节即可. 代码如下: #include<iostream> # ...

  6. Luogu P1967 货车运输

    qwq 这题是知道了正解做法才写的.. 求每两点间最小权值最大的路径,本来我以为要每个点都跑一遍dij(?),后来意识到生成树好像是用来找这个的( ´▽`) 然后我问dtxdalao对不对,他说“我记 ...

  7. 「NOIP2013」「LuoguP1967」货车运输(最大生成树 倍增 LCA

    题目描述 AA国有nn座城市,编号从 11到nn,城市之间有 mm 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 qq 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最 ...

  8. kruskal - 倍增 - 并查集 - Luogu 1967 货车运输

    P1967 货车运输 题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过 ...

  9. NOIP2013 货车运输(最大生成树,倍增)

    NOIP2013 货车运输(最大生成树,倍增) A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物,司机们想知道 ...

随机推荐

  1. BZOJ4676 Xor-Mul棋盘

    传送门 题目大意懒得写了,题目说的挺明白的了 题解 主要的难点在于异或意义下的最大值和很玄学,但不难发现这道题中让你定义的$D_{i,j}$只参与异或运算,所以我们可以逐位进行讨论.所以我们每一位就只 ...

  2. C++ STL, next_permutation用法。

    next_permutation 将按字母表顺序生成给定序列的下一个较大的序列,直到整个序列为 #include"iostream" #include"algorithm ...

  3. fiddler 的AutoRespoder的使用(手动添加测试桩)

    ---恢复内容开始--- 1.首先我们抓取一个百度的请求,由于百度请求是https协议,需要手动添加证书(这个不写了,大佬们自己手动找下资料) 2.fiddler抓取的百度请求,其他的无关信息删除,便 ...

  4. C#使用NPOI将DataGridView内数据写入电子表格Excel

    NPOI能够在用户没有安装office的情况下读写office文件,包括.xls/.doc/.ppt等类型的文件.本文介绍的是使用NPOI库内的函数读写Excel(.xls)内的内容.在使用NPOI之 ...

  5. Centos开启telnet/ssh/ftp/sftp服务

    Telnet 开启telnet服务步骤: 1.   查看CentOS/Telnet_server版本:#cat /etc/issue,   #rpm -qa | grep telnet 2.   安装 ...

  6. PHP二维数组,根据多个字段来排序

    如果是最最常见的二维数组排序, 大多数情况下也只用到二维: 用php内置函数 array_multisort( )  是最简单的: <?php 假设, $arr 是一个二维数组, $arg1是取 ...

  7. shell入门-系统和用户的配置文件

    变量分为系统变量和用户自定义变量,他们的配置文件当然分为系统环境变量配置文件和用户环境变量控制文件 1.规定环境变量的配置文件 [root@wangshaojun 111]# vim /etc/pro ...

  8. ViewPage+Fragment(仿微信切换带通知)

    第一步 : 布局文件 activity_main.xml <?xml version="1.0" encoding="utf-8"?> <Li ...

  9. CodeForces 492D Vanya and Computer Game (思维题)

    D. Vanya and Computer Game time limit per test 2 seconds memory limit per test 256 megabytes input s ...

  10. 8、泛型程序设计与c++标准模板库4.标准c++库中的算法

    标准c++算法是通过迭代器和模板来实现的,其实算法本身就是一种函数模板. 算法从迭代器那里获得一个元素,而迭代器则知道一个元素在容器中的什么位置.迭代器查找元素的位置并将这些信息提供给算法以便算法能够 ...