K-DSN

深度堆叠网络

Random Features for Large-Scale Kernel Machines
To accelerate the training of kernel machines, we propose to map the input data
to a randomized low-dimensional feature space and then apply existing fast linear
methods. Our randomized features are designed so that the inner products of the
transformed data are approximately equal to those in the feature space of a user
specified shift-invariant kernel. We explore two sets of random features, provide
convergence bounds on their ability to approximate various radial basis kernels,
and show that in large-scale classification and regression tasks linear machine
learning algorithms that use these features outperform state-of-the-art large-scale
kernel machines.
On the Error of Random Fourier Features

https://www.cs.cmu.edu/~dsutherl/papers/rff_uai15.pdf

Kernel methods give powerful, flexible, and the-
oretically grounded approaches to solving many
problems in machine learning. The standard ap-
proach, however, requires pairwise evaluations
of a kernel function, which can lead to scalabil-
ity issues for very large datasets. Rahimi and
Recht (2007) suggested a popular approach to
handling this problem, known as random Fourier
features. The quality of this approximation, how-
ever, is not well understood. We improve the uni-
form error bound of that paper, as well as giving
novel understandings of the embedding’s vari-
ance, approximation error, and use in some ma-
chine learning methods. We also point out that
surprisingly, of the two main variants of those
features, the more widely used is strictly higher-
variance for the Gaussian kernel and has worse
bounds.

Random Fourier Features的更多相关文章

  1. [占位-未完成]scikit-learn一般实例之十二:用于RBF核的显式特征映射逼近

    It shows how to use RBFSampler and Nystroem to approximate the feature map of an RBF kernel for clas ...

  2. Author and Submission Instructions

    This document contains information about the process of submitting a paper to NIPS 2014. You can als ...

  3. 计算机视觉code与软件

    Research Code A rational methodology for lossy compression - REWIC is a software-based implementatio ...

  4. (转载) AutoML 与轻量模型大列表

    作者:guan-yuan 项目地址:awesome-AutoML-and-Lightweight-Models 博客地址:http://www.lib4dev.in/info/guan-yuan/aw ...

  5. (转)AutoML 与轻量模型大列表: awesome-AutoML-and-Lightweight-Models

    Awesome-AutoML-and-Lightweight-Models 原文:http://bbs.cvmart.net/articles/414/zi-yuan-automl-yu-qing-l ...

  6. Image Processing and Analysis_15_Image Registration:a survey of image registration techniques——1992

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  7. OpenLayers实现覆盖物选择信息提示

    var map; function init() { map = new OpenLayers.Map("map",{projection:"EPSG:3857" ...

  8. 【转载】NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩、机器学习及最优化算法

    原文:NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩.机器学习及最优化算法 导读 AI领域顶会NeurIPS正在加拿大蒙特利尔举办.本文针对实验室关注的几个研究热点,模型压缩.自 ...

  9. ArcGIS工具备忘

    1.Repair Geometry (Data Management) 几何图形修复,比如面图层不满足节点坐标逆时针 2.Raster Domain (3D Analyst) 获取栅格范围 3.Int ...

随机推荐

  1. Java之基本类库学习

    JAVA基本类库: (一),输入相关 main(String[] args):设置输入参数 输入类:Scanner:Scanner sc=new Scanner(System.in); (二),系统相 ...

  2. java-selenium(一)元素定位

    在定位单个元素时,selenium-webdriver 提示了如下一些方法对元素进行定位.下面这些定位方式中,优先使用 id.name.classname,对于网上的链接元素,推荐使用linkText ...

  3. 安装jenkins插件的两种方法

    安装jenkins插件有两种方法,一种是在线安装,一种是离线安装.两种方式介绍如下: 1.如果服务器可以上网,那边选择在线安装最好不过了,安装流程为:系统管理----插件管理---选择需要的插件直接安 ...

  4. EffectiveJava(17)要么为继承而设计,要么禁止继承

    1.如果为了继承而设计类,那么该类必须有文档说明它可覆盖的方法的自用性.对于每个公有的 或受保护的方法或者构造器,它的文档必须指明该方法或者构造器调用了那些可覆盖的方法,是以 什么顺序调用的,每个调用 ...

  5. SpringMVC处理MySQL BLOB字段的下载

    任务: uos.docfile的content字段是longblob类型,通过Web点击链接能下载到存储在这个字段里的文件.Web点击链接类似如下形式: http://localhost:8080/d ...

  6. Laravel5.1之表单验证

    一.生成一个验证类 1.生成 artisan make:request TestRequest 2.生成的文件在项目Http下的Requests文件夹下 3.默认生成的文件如下 class TestR ...

  7. SQLite升级数据库:

    SQLiteOpenHelper子类关键代码: SQLite升级数据库: SQLiteOpenHelper子类关键代码: public class MyDataHelper extends SQLit ...

  8. 【Xcode学C-3】if等流程控制、函数的介绍说明标记分组、#include以及LLVM

    一.流程控制:if.while和for循环 (1)if括号中面常常遇到推断是否相等的情况,并且新手常常会把==写成=.所以建议的习惯是把常量放在前面.如a==10.写成10==a,这样就不易犯错. ( ...

  9. CHM乱码解决方案!

    --希望对您有所帮助,闲暇之余请访问我的网店高清数据线 下载了一个日文的chm帮助文件,打开的时候,发现是乱码, CHM 文档不像IE浏览器一样,右键可以选择字符编码,非常不便. 原因可能是 CHM ...

  10. 关于\r和\n的一些问题总结

    \r表示"回车"(carriage return).\n表示"换行"(line feed),在Windows系统下.输入回车键会自己主动变成\r\n 相同的,在 ...