K-DSN

深度堆叠网络

Random Features for Large-Scale Kernel Machines
To accelerate the training of kernel machines, we propose to map the input data
to a randomized low-dimensional feature space and then apply existing fast linear
methods. Our randomized features are designed so that the inner products of the
transformed data are approximately equal to those in the feature space of a user
specified shift-invariant kernel. We explore two sets of random features, provide
convergence bounds on their ability to approximate various radial basis kernels,
and show that in large-scale classification and regression tasks linear machine
learning algorithms that use these features outperform state-of-the-art large-scale
kernel machines.
On the Error of Random Fourier Features

https://www.cs.cmu.edu/~dsutherl/papers/rff_uai15.pdf

Kernel methods give powerful, flexible, and the-
oretically grounded approaches to solving many
problems in machine learning. The standard ap-
proach, however, requires pairwise evaluations
of a kernel function, which can lead to scalabil-
ity issues for very large datasets. Rahimi and
Recht (2007) suggested a popular approach to
handling this problem, known as random Fourier
features. The quality of this approximation, how-
ever, is not well understood. We improve the uni-
form error bound of that paper, as well as giving
novel understandings of the embedding’s vari-
ance, approximation error, and use in some ma-
chine learning methods. We also point out that
surprisingly, of the two main variants of those
features, the more widely used is strictly higher-
variance for the Gaussian kernel and has worse
bounds.

Random Fourier Features的更多相关文章

  1. [占位-未完成]scikit-learn一般实例之十二:用于RBF核的显式特征映射逼近

    It shows how to use RBFSampler and Nystroem to approximate the feature map of an RBF kernel for clas ...

  2. Author and Submission Instructions

    This document contains information about the process of submitting a paper to NIPS 2014. You can als ...

  3. 计算机视觉code与软件

    Research Code A rational methodology for lossy compression - REWIC is a software-based implementatio ...

  4. (转载) AutoML 与轻量模型大列表

    作者:guan-yuan 项目地址:awesome-AutoML-and-Lightweight-Models 博客地址:http://www.lib4dev.in/info/guan-yuan/aw ...

  5. (转)AutoML 与轻量模型大列表: awesome-AutoML-and-Lightweight-Models

    Awesome-AutoML-and-Lightweight-Models 原文:http://bbs.cvmart.net/articles/414/zi-yuan-automl-yu-qing-l ...

  6. Image Processing and Analysis_15_Image Registration:a survey of image registration techniques——1992

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  7. OpenLayers实现覆盖物选择信息提示

    var map; function init() { map = new OpenLayers.Map("map",{projection:"EPSG:3857" ...

  8. 【转载】NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩、机器学习及最优化算法

    原文:NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩.机器学习及最优化算法 导读 AI领域顶会NeurIPS正在加拿大蒙特利尔举办.本文针对实验室关注的几个研究热点,模型压缩.自 ...

  9. ArcGIS工具备忘

    1.Repair Geometry (Data Management) 几何图形修复,比如面图层不满足节点坐标逆时针 2.Raster Domain (3D Analyst) 获取栅格范围 3.Int ...

随机推荐

  1. tez参数

    https://tez.apache.org/releases/0.8.4/tez-api-javadocs/configs/TezConfiguration.html

  2. 利用yarn多队列实现hadoop资源隔离

    大数据处理离不开hadoop集群的部署和管理,对于本来硬件资源就不多的创业团队来说,做好资源的共享和隔离是很有必要的,毕竟不像BAT那么豪,那么怎么样能把有限的节点同时分享给多组用户使用而且互不影响呢 ...

  3. cocos2d-x ios游戏开发初认识(六) 渲染的优化

    做程序开发肯定要考虑到内存的优化,毕竟iphone本身的内存就不是非常大.这一节主要说这个cocos2d开发对内存的优化,详细表如今,既能够对同样的精灵(图片)仅仅渲染一次,也能够对不能的精灵仅仅渲染 ...

  4. 2. Spring Boot返回json数据【从零开始学Spring Boot】

    在做如下操作之前,我们对之前的Hello进行简单的修改,我们新建一个包com.kfit.test.web然后新建一个类HelloControoler,然后修改App.Java类,主要是的这个类就是一个 ...

  5. #include <>与#include""区别

    <>先去系统目录中找头文件,如果没有在到当前目录下找.所以像标准的头文件 stdio.h.stdlib.h等用这个方法. 而""首先在当前目录下寻找,如果找不到,再到系 ...

  6. Activity启动活动最佳写法

    一,在被启动的Activity中新加一个静态方法public static void actionStart(Context context, String data1, String data2) ...

  7. Android实现炫酷SVG动画效果

    svg是眼下十分流行的图像文件格式了,svg严格来说应该是一种开放标准的矢量图形语言,使用svg格式我们能够直接用代码来描画图像,能够用不论什么文字处理工具打开svg图像.通过改变部分代码来使图像具有 ...

  8. 【Excle】使用&拼接,拼接后复制到文本编辑器存在引号(“”)问题

    1.错误的操作 如下图:拼接 拼接后,复制到文本编辑器: 1.1错误原因 出现上述问题的原因:是由于在拼接字符串的时候, INSERT INTO CST(ID,NAME)values( 上述这段字符& ...

  9. windows超过最大连接数解决命令

    query user /server:218.57.146.175 logoff  1 /server:218.57.146.175

  10. 尖峰冲击测试(spike Testing)

    与可靠性测试类似,尖峰冲击测试这种方法也是从其他行业借鉴而来.在电力工业,有一种冲击测试,用来验证设备在刚刚接通电源时能否经受住涌流的破坏.所谓涌流,通俗地说,就是电源接通瞬间,电流突然变大的现象.涌 ...