Breaking Biscuits

时间限制: 1 Sec  内存限制: 128 MB  Special Judge
提交: 70  解决: 26
[提交] [状态] [讨论版] [命题人:admin]

题目描述

This year, Walter’s workplace resolved to try something radically different: they’re going to change the weekly order of biscuits for the break room to a whole other brand.
Biscuits come in many shapes and sizes, but the particular brand they settled on has two special qualities:
• It is completely planar (two-dimensional);
• It is perfectly polygon-shaped.
However, disaster struck immediately: the available mugs in the break room are too narrow for Walter to be able to dunk these new biscuits into, no matter what combination of rotations along the three axes he tries.
There is only one thing for it: Walter will need to order another mug.
Before taking this drastic step, it is vital to know how wide the diameter of this mug will need to be in order to succesfully accommodate a (possibly rotated) biscuit of the new brand.

 

输入

• One line containing an integer N (3 ≤ N ≤ 100), the number of vertices in the biscuit.
• Each of the following N lines contains two space-separated integers Xi and Yi (−105 ≤Xi, Yi ≤ 105), the coordinates of the i-th vertex.
Vertices are always given in anti-clockwise order. Also, as anyone can tell you, biscuits never self-intersect and always have positive area.

输出

Output the minimum possible diameter of the new mug, in order that it can fit the new kind of biscuit fully inside in at least one orientation. The output must be accurate to an absolute or relative error of at most 10−6.

 

样例输入

4
0 0
5 0
5 2
0 2

样例输出

2.0
 #include<bits/stdc++.h>
using namespace std;
const int N=;
int n;
double ans=1e100;
struct P
{
int x,y;
P() {}
P(int _x,int _y)
{
x=_x,y=_y;
}
P operator-(P b)
{
return P(x-b.x,y-b.y);
}
double len()
{
return hypot(x,y);
}
} a[N];
double cross(P a,P b)
{
return a.x*b.y-a.y*b.x;
}
double dist(P p,P a,P b)
{
return cross(p-a,b-a)/(b-a).len();
}
void solve()
{
for(int i = ; i <= n; i++)
{
for(int j = ; j < i; j++)
{
double l=1e100,r=-1e100;
for(int k = ; k <= n; k++)
{
l=min(l,dist(a[k],a[i],a[j]));
r=max(r,dist(a[k],a[i],a[j]));
}
r-=l;
ans=min(ans,r);
}
}
}
int main()
{
scanf("%d",&n);
for(int i=; i<=n; i++) scanf("%d %d",&a[i].x,&a[i].y);
solve();
printf("%.10f\n",ans);
return ;
}

Breaking Biscuits(模板题-求凸边形的宽)的更多相关文章

  1. (hdu step 7.2.1)The Euler function(欧拉函数模板题——求phi[a]到phi[b]的和)

    题目: The Euler function Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...

  2. 后缀数组(模板题) - 求最长公共子串 - poj 2774 Long Long Message

    Language: Default Long Long Message Time Limit: 4000MS   Memory Limit: 131072K Total Submissions: 21 ...

  3. UVA 796 Critical Links(模板题)(无向图求桥)

    <题目链接> 题目大意: 无向连通图求桥,并将桥按顺序输出. 解题分析: 无向图求桥的模板题,下面用了kuangbin的模板. #include <cstdio> #inclu ...

  4. UVA 315 Network (模板题)(无向图求割点)

    <题目链接> 题目大意: 给出一个无向图,求出其中的割点数量. 解题分析: 无向图求割点模板题. 一个顶点u是割点,当且仅当满足 (1) u为树根,且u有多于一个子树. (2) u不为树根 ...

  5. hdu1115 Lifting the Stone(几何,求多边形重心模板题)

    转载请注明出处:http://blog.csdn.net/u012860063 题目链接:pid=1115">http://acm.hdu.edu.cn/showproblem.php ...

  6. luogu P4725 多项式对数函数 (模板题、FFT、多项式求逆、求导和积分)

    手动博客搬家: 本文发表于20181125 13:25:03, 原地址https://blog.csdn.net/suncongbo/article/details/84487306 题目链接: ht ...

  7. POJ2774 & 后缀数组模板题

    题意: 求两个字符串的LCP SOL: 模板题.连一起搞一搞就好了...主要是记录一下做(sha)题(bi)过程心(cao)得(dan)体(xin)会(qing) 后缀数组概念...还算是简单的,过程 ...

  8. HDU-3549 最大流模板题

    1.HDU-3549   Flow Problem 2.链接:http://acm.hdu.edu.cn/showproblem.php?pid=3549 3.总结:模板题,参考了 http://ww ...

  9. POJ 3041 匈牙利算法模板题

    一开始预习是百度的算法 然后学习了一下 然后找到了学长的ppt 又学习了一下.. 发现..居然不一样... 找了模板题试了试..百度的不好用 反正就是wa了..果然还是应当跟着学长混.. 图两边的点分 ...

随机推荐

  1. hdu 6297(常用的输出格式总结)

    题目链接:https://cn.vjudge.net/problem/HDU-6297 题目介绍:一道关于输出格式规范问题 wrong answer代码: #include<iostream&g ...

  2. Jenkins安装过程

    1.安装环境 配置java环境 安装Tomcat 2.将Jenkins.war 包放入Tomcat的webapps目录 3.启动tomcat后,tomcat会解压war包,生成一个jenkins文件夹 ...

  3. thinkPHP 模板操作

    1.assign赋值 $this->assign('title','模板操作'); $this->assign('bests',$bests);//$bests是二维数组 2.变量的输出 ...

  4. oracle db 产品路线图

    Release Schedule of Current Database Releases (文档 ID 742060.1)

  5. HDFS读写文件流程

    读取: 写入:https://www.imooc.com/article/70527

  6. spring aop 原理学习

    @EnableAspectJAutoProxy: @Import(AspectJAutoProxyRegistrar.class) 实际是创建了一个以org.springframework.aop.c ...

  7. mac U盘安装盘制作

    以下面的版本为例: Install_macOS_Sierra_10.12.6.dmg 解压到桌面,然后打命令 sudo /Users/love/Desktop/Install\ macOS\ Sier ...

  8. 基于Python实现邮件发送

    import smtplibfrom email.mime.text import MIMETextemail_host = 'smtp.163.com' # 邮箱地址email_user = 'sz ...

  9. hbase常识及habse适合什么场景

    当我们对于数据结构字段不够确定或杂乱无章很难按一个概念去进行抽取的数据适合用使用什么数据库?答案是什么,如果我们使用的传统数据库,肯定留有多余的字段,10个不行,20个,但是这个严重影响了质量.并且如 ...

  10. MachineLearningPreface

    机器学习(包括监督学习, 无监督学习, 半监督学习与强化学习) 监督学习(包括分类与线性回归) 分类(标签的值为散列的"yes"或者"no", "go ...