【CF660E】Different Subsets For All Tuples(组合数学)
大致题意: 有一个长度为\(n\)的数列,每个位置上数字的值在\([1,m]\)范围内,则共有\(m^n\)种可能的数列。分别求出每个数列中本质不同的子序列个数,然后求和。
一些分析
首先,我们单独考虑空序列的个数\(m^n\),然后接下来就可以只考虑非空序列的个数了。
假设有一个长度为\(i\)的子序列(\(1\le i\le n\)),且其在序列中的位置分别为\(pos_1,pos_2,...,pos_i\),值分别为\(val_1,val_2,...,val_i\)。
则我们强制在\(1\sim pos_1-1\)范围内不能出现\(val_1\),\(pos_1+1\sim pos_2-1\)范围内不能出现\(val_2\),以此类推。
所以,在前\(pos_i\)个位置中,除\(pos_{1\sim i}\)这\(i\)个位置填\(val_{i\sim i}\)外,如上所述,其余\(pos_i-i\)个位置各有\(m-1\)种填法。
而在第\(pos_i\)个位置之后就可以随便填了,每个位置都有\(m\)种填法。
推式子
通过之前的分析,于是得到式子如下:
\]
对于这个式子的解释:
首先,用\(i\)枚举子序列长度,而长度为\(i\)的子序列共有\(m^i\)种可能。
接下来\(j\)枚举\(pos_i\),而\(pos_{1\sim i-1}\)依次选择\([1,pos_i-1]\)(即这里的\([1,j-1]\))这个范围内的任意位置都是合法的,就相当于在\(j-1\)个位置中选择\(i-1\)个位置,方案数就是\(C_{j-1}^{i-1}\)。
从前文可得,\(pos_i-i\)(即这里的\(j-i\))个位置有\(m-1\)种填法,\(n-pos_i\)(即这里的\(n-j\))个位置有\(m\)种填法。
于是便得到上述式子。
然后就是化简:
先移项,把\(m^i\)移进去得到:
\]
改变枚举顺序,得到:
\]
观察到组合数中的\(i-1\)和\(j-1\),不难想到直接将枚举的\(i,j\)减\(1\),即:
\]
然后我们可以化简一下系数,发现这些\(1\)和\(-1\)恰好抵消了,得到:
\]
然后我们拎出\(m^{n-j}\),就可以得到:
\]
那这样有什么好处呢?
回想一下二项式定理:\((x+y)^n=\sum_{i=0}^{n-1}x^iy^{n-i}\)。
这似乎与上面式子的后半部分有几分相似。
于是就可以化简得到:
\]
这个式子可以\(O(nlogn)\)快速幂计算,也可以直接\(O(n)\)计算。
总而言之,可以过了。
代码
#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 1000000
#define X 1000000007
#define Qinv(x) Qpow(x,X-2)
#define Inc(x,y) ((x+=(y))>=X&&(x-=X))
using namespace std;
int n,m;
I int Qpow(RI x,RI y) {RI t=1;W(y) y&1&&(t=1LL*t*x%X),x=1LL*x*x%X,y>>=1;return t;}//快速幂
int main()
{
RI i,ans,p1,p2,b1,b2;
scanf("%d%d",&n,&m),ans=p1=Qpow(m,n),p2=1,b1=Qinv(m),b2=(1LL*2*m-1)%X;//初始化
for(i=0;i^n;++i) Inc(ans,1LL*p1*p2%X),p1=1LL*p1*b1%X,p2=1LL*p2*b2%X;//O(n)计算答案
return printf("%d",ans),0;//输出答案
}
【CF660E】Different Subsets For All Tuples(组合数学)的更多相关文章
- 【组合数学】cf660E. Different Subsets For All Tuples
比较套路的组合数学题 For a sequence a of n integers between 1 and m, inclusive, denote f(a) as the number of d ...
- cf660E Different Subsets For All Tuples
For a sequence a of n integers between 1 and m, inclusive, denote f(a) as the number of distinct sub ...
- 【CF660E】Different Subsets For All Tuples 结论题
[CF660E]Different Subsets For All Tuples 题意:对于所有长度为n,每个数为1,2...m的序列,求出每个序列的本质不同的子序列的数目之和.(多个原序列可以有相同 ...
- Educational Codeforces Round 11 E. Different Subsets For All Tuples 动态规划
E. Different Subsets For All Tuples 题目连接: http://www.codeforces.com/contest/660/problem/E Descriptio ...
- Codeforces 660E Different Subsets For All Tuples【组合数学】
看了官方题解+q神的讲解才懂... 智商问题.. 讲道理..数学真的比脱单难啊... 题目链接: http://codeforces.com/problemset/problem/660/E 题意: ...
- Different Subsets For All Tuples CodeForces - 660E (组合计数)
大意: 定义$f(a)$表示序列$a$本质不同子序列个数. 给定$n,m$, 求所有长$n$元素范围$[1,m]$的序列的$f$值之和. 显然长度相同的子序列贡献是相同的. 不考虑空串, 假设长$x$ ...
- FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ
因为垃圾电脑太卡了就重开了一个... 前传:多项式Ⅰ u1s1 我预感还会有Ⅲ 多项式基础操作: 例题: 26. CF438E The Child and Binary Tree 感觉这题作为第一题还 ...
- 2019.03.14 ZJOI2019模拟赛 解题报告
得分: \(100+100+0=200\)(\(T1\)在最后\(2\)分钟写了出来,\(T2\)在最后\(10\)分钟写了出来,反而\(T3\)写了\(4\)个小时爆\(0\)) \(T1\):风王 ...
- Codeforces 895.C Square Subsets
C. Square Subsets time limit per test 4 seconds memory limit per test 256 megabytes input standard i ...
随机推荐
- 多数据源 + Configuration中bean依赖注入顺序问题
为什么要调用方法,而不是直接autowire? 官方文档 https://docs.spring.io/spring-boot/docs/current/reference/html/howto-da ...
- 暴力打表之hdu 2089
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2089 有两种方法: 1.数位DP算法 2.暴力打表——真是个好法子!!! 接下来是注意点: 1.一般这 ...
- Linux防火墙配置学习记录
一.iptables基本原理 1.iptables是一个管理内核包过滤的工具,包含4个表,5个链 表和链被称为Netfilter模块的两个维度, 表提供特定的功能内置四个表: filter表:用于对数 ...
- Eclipse中项目报Target runtime com.genuitec.runtime.generic.jee60 is not defined异常的解决
参考 http://843977358.iteye.com/blog/2295344
- Silverlight 动态创建Enum
private Type CreateEnum() { List<string> lists = new List<string>(); lists.Add("男&q ...
- Spark各个组件的概念,Driver进程
spark应用涉及的一些基本概念: 1.mater:主要是控制.管理和监督整个spark集群 2.client:客户端,将用应用程序提交,记录着要业务运行逻辑和master通讯. 3.sparkCon ...
- Mybatis学习笔记14 - 动态sql之foreach标签
一.查询给定集合中员工id对应的所有员工信息 示例代码: 接口定义: package com.mybatis.dao; import com.mybatis.bean.Employee; import ...
- Magnum DevStack安装
local.conf文件 [[local|localrc]]DATABASE_PASSWORD=123456RABBIT_PASSWORD=123456SERVICE_TOKEN=123456SERV ...
- oracle 中 Start with...connect by 的用法(递归查询)
阿里电面问到了相关的知识,在网上找到这方面的文章. 这几个关键字是查询递归数据的,形成一个树状结构.目前只有oracle支持,其他数据都要结合存储过程实现 语法: select * from some ...
- LeetCode 704.二分查找(C++)
给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1. 示例 1: 输入: num ...