Weka学习之关联规则分析
步骤:
(一) 选择数据源
(二)选择要分析的字段
(三)选择需要的关联规则算法
(四)点击start运行
(五) 分析结果
算法选择:
Apriori算法参数含义
1.car:如果设为真,则会挖掘类关联规则而不是全局关联规则。
2.classindex: 类属性索引。如果设置为-1,最后的属性被当做类属性。
3.delta: 以此数值为迭代递减单位。不断减小支持度直至达到最小支持度或产生了满足数量要求的规则。
4.lowerBoundMinSupport: 最小支持度下界。
5.metricType: 度量类型,设置对规则进行排序的度量依据。可以是:置信度(类关联规则只能用置信度挖掘),提升度(lift),杠杆率(leverage),确信度(conviction)。
在 Weka中设置了几个类似置信度(confidence)的度量来衡量规则的关联程度,它们分别是:
a)Lift : P(A,B)/(P(A)P(B)) Lift=1时表示A和B独立。这个数越大(>1),越表明A和B存在于一个购物篮中不是偶然现象,有较强的关联度.
b)Leverage :P(A,B)-P(A)P(B)
Leverage=0时A和B独立,Leverage越大A和B的关系越密切
c) Conviction:P(A)P(!B)/P(A,!B) (!B表示B没有发生) Conviction也是用来衡量A和B的独立性。从它和lift的关系(对B取反,代入Lift公式后求倒数)可以看出,这个值越大, A、B越关联。
6.minMtric :度量的最小值。
7.numRules: 要发现的规则数。
8.outputItemSets: 如果设置为真,会在结果中输出项集。
9.removeAllMissingCols: 移除全部为缺省值的列。
10.significanceLevel :重要程度。重要性测试(仅用于置信度)。
11.upperBoundMinSupport: 最小支持度上界。 从这个值开始迭代减小最小支持度。
12.verbose: 如果设置为真,则算法会以冗余模式运行。
FPgrowph决策树算法
FP的全称是Frequent Pattern,在算法中使用了一种称为频繁模式树(Frequent Pattern Tree)的数据结构。FP-tree是一种特殊的前缀树,由频繁项头表和项前缀树构成。FP-Growth算法基于以上的结构加快整个挖掘过程。
下一篇:
http://www.cnblogs.com/tomcattd/p/3478678.html
Weka学习之关联规则分析的更多相关文章
- 【集美大学1411_助教博客】个人作业2——英语学习APP案例分析 成绩
个人作业2--英语学习APP案例分析,截止发稿时间全班31人,提交31,未提交0人.有一名同学已经写了作业但忘记提交了,这次给分了,但下不为例.由于助教这周有点忙,所以点评得非常不及时,请同学们见谅. ...
- ROS_Kinetic_29 kamtoa simulation学习与示例分析(一)
致谢源代码网址:https://github.com/Tutorgaming/kamtoa-simulation kamtoa simulation学习与示例分析(一) 源码学习与分析是学习ROS,包 ...
- GIS案例学习笔记-水文分析河网提取地理建模
GIS案例学习笔记-水文分析河网提取地理建模 联系方式:谢老师,135-4855-4328,xiexiaokui#qq.com 目的:针对数字高程模型,通过水文分析,提取河网 操作时间:25分钟 数据 ...
- Android:日常学习笔记(2)——分析第一个Android应用程序
Android:日常学习笔记(2)——分析第一个Android应用程序 Android项目结构 整体目录结构分析 说明: 除了APP目录外,其他目录都是自动生成的.APP目录的下的内容才是我们的工作重 ...
- HashMap的源码学习以及性能分析
HashMap的源码学习以及性能分析 一).Map接口的实现类 HashTable.HashMap.LinkedHashMap.TreeMap 二).HashMap和HashTable的区别 1).H ...
- Netty 源码学习——客户端流程分析
Netty 源码学习--客户端流程分析 友情提醒: 需要观看者具备一些 NIO 的知识,否则看起来有的地方可能会不明白. 使用版本依赖 <dependency> <groupId&g ...
- (转载)微软数据挖掘算法:Microsoft 关联规则分析算法(7)
前言 本篇继续我们的微软挖掘算法系列总结,前几篇我们分别介绍了:微软数据挖掘算法:Microsoft 决策树分析算法(1).微软数据挖掘算法:Microsoft 聚类分析算法(2).微软数据挖掘算法: ...
- 深度学习Dropout技术分析
深度学习Dropout技术分析 什么是Dropout? dropout是指在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃.注意是暂时,对于随机梯度下降来说,由于是随机 ...
- Weka关联规则分析
购物篮分析: Apriori算法: 参数设置: 1.car 如果设为真,则会挖掘类关联规则而不是全局关联规则. 2. classindex 类属性索引.如果设置为-1,最后的属性被当做类属性. 3. ...
随机推荐
- EDM邮件群发十大技巧提升邮件群发效果
有很多人抱怨现在邮件群发没有什么效果,其实不然,每一种推广方式都有他的优势,没有看到效果说明你没有掌握好方法.个人觉得EDM邮件群发的优势在于传播速度快.不受地域限制.不受时间限制.邮件内容能够多元化 ...
- 彻底理解H5的DOM事件
我们大家都知道,人与人之间的交流可以通过语言,文字,肢体动作,面部微表情等,但是你知道Javascript和HTML之间是通过什么进行交互的么?你又知道Javascript和HTML之间是如何进行交互 ...
- iOS app测试的福音--TestFlight使用说明
Here's What's New: Invite up to 1,000 external testers using just their email address Easy to use Te ...
- 【Linux】CentOS7 添加常用源
CentOS 的官方源去掉了一些与版权有关的软件,因此想要安装这些软件或者手动下载安装,或者使用其他源. 下面是添加EPEL源和RPMforge源的步骤. 1.首先, 添加源之前要确定系统架构及版本 ...
- Kubernetes:理解资源的概念
不知你是否已清楚,Kubernetes 是支持 Docker 和 rkt(当前是这两种)的容器调度系统.除了下面这些优美的特性,比如简易部署,配置管理,服务发现,等等,它还允许我们以一种更高效的方式来 ...
- ES6里关于字符串的拓展
一.子串识别 自从 JS 引入了 indexOf() 方法,开发者们就使用它来识别字符串是否存在于其它字符串中.ES6 包含了以下三个方法来满足这类需求: 1.includes():该方法在给定文本存 ...
- 一个基于RSA算法的Java数字签名例子
原文地址:一个基于RSA算法的Java数字签名例子 一.前言: 网络数据安全包括数据的本身的安全性.数据的完整性(防止篡改).数据来源的不可否认性等要素.对数据采用加密算法加密可以保证数据本身的安全性 ...
- CMAKE 编译报错
报错如下: CMake Error: your C compiler: "CMAKE_C_COMPILER-NOTFOUND" was not found. 没有安装 gcc 和 ...
- 一个java调用python的问题
使用 ProcessBuilder List<String> commands = new ArrayList(); commands.add("python"); c ...
- Nodejs 模拟telnet
代码下载:https://files.cnblogs.com/files/xiandedanteng/nodejsTelnet.rar 效果: server.js代码: var net=require ...