Weka学习之关联规则分析
步骤:
(一) 选择数据源
(二)选择要分析的字段
(三)选择需要的关联规则算法
(四)点击start运行
(五) 分析结果
算法选择:
Apriori算法参数含义
1.car:如果设为真,则会挖掘类关联规则而不是全局关联规则。
2.classindex: 类属性索引。如果设置为-1,最后的属性被当做类属性。
3.delta: 以此数值为迭代递减单位。不断减小支持度直至达到最小支持度或产生了满足数量要求的规则。
4.lowerBoundMinSupport: 最小支持度下界。
5.metricType: 度量类型,设置对规则进行排序的度量依据。可以是:置信度(类关联规则只能用置信度挖掘),提升度(lift),杠杆率(leverage),确信度(conviction)。
在 Weka中设置了几个类似置信度(confidence)的度量来衡量规则的关联程度,它们分别是:
a)Lift : P(A,B)/(P(A)P(B)) Lift=1时表示A和B独立。这个数越大(>1),越表明A和B存在于一个购物篮中不是偶然现象,有较强的关联度.
b)Leverage :P(A,B)-P(A)P(B)
Leverage=0时A和B独立,Leverage越大A和B的关系越密切
c) Conviction:P(A)P(!B)/P(A,!B) (!B表示B没有发生) Conviction也是用来衡量A和B的独立性。从它和lift的关系(对B取反,代入Lift公式后求倒数)可以看出,这个值越大, A、B越关联。
6.minMtric :度量的最小值。
7.numRules: 要发现的规则数。
8.outputItemSets: 如果设置为真,会在结果中输出项集。
9.removeAllMissingCols: 移除全部为缺省值的列。
10.significanceLevel :重要程度。重要性测试(仅用于置信度)。
11.upperBoundMinSupport: 最小支持度上界。 从这个值开始迭代减小最小支持度。
12.verbose: 如果设置为真,则算法会以冗余模式运行。
FPgrowph决策树算法
FP的全称是Frequent Pattern,在算法中使用了一种称为频繁模式树(Frequent Pattern Tree)的数据结构。FP-tree是一种特殊的前缀树,由频繁项头表和项前缀树构成。FP-Growth算法基于以上的结构加快整个挖掘过程。
下一篇:
http://www.cnblogs.com/tomcattd/p/3478678.html
Weka学习之关联规则分析的更多相关文章
- 【集美大学1411_助教博客】个人作业2——英语学习APP案例分析 成绩
个人作业2--英语学习APP案例分析,截止发稿时间全班31人,提交31,未提交0人.有一名同学已经写了作业但忘记提交了,这次给分了,但下不为例.由于助教这周有点忙,所以点评得非常不及时,请同学们见谅. ...
- ROS_Kinetic_29 kamtoa simulation学习与示例分析(一)
致谢源代码网址:https://github.com/Tutorgaming/kamtoa-simulation kamtoa simulation学习与示例分析(一) 源码学习与分析是学习ROS,包 ...
- GIS案例学习笔记-水文分析河网提取地理建模
GIS案例学习笔记-水文分析河网提取地理建模 联系方式:谢老师,135-4855-4328,xiexiaokui#qq.com 目的:针对数字高程模型,通过水文分析,提取河网 操作时间:25分钟 数据 ...
- Android:日常学习笔记(2)——分析第一个Android应用程序
Android:日常学习笔记(2)——分析第一个Android应用程序 Android项目结构 整体目录结构分析 说明: 除了APP目录外,其他目录都是自动生成的.APP目录的下的内容才是我们的工作重 ...
- HashMap的源码学习以及性能分析
HashMap的源码学习以及性能分析 一).Map接口的实现类 HashTable.HashMap.LinkedHashMap.TreeMap 二).HashMap和HashTable的区别 1).H ...
- Netty 源码学习——客户端流程分析
Netty 源码学习--客户端流程分析 友情提醒: 需要观看者具备一些 NIO 的知识,否则看起来有的地方可能会不明白. 使用版本依赖 <dependency> <groupId&g ...
- (转载)微软数据挖掘算法:Microsoft 关联规则分析算法(7)
前言 本篇继续我们的微软挖掘算法系列总结,前几篇我们分别介绍了:微软数据挖掘算法:Microsoft 决策树分析算法(1).微软数据挖掘算法:Microsoft 聚类分析算法(2).微软数据挖掘算法: ...
- 深度学习Dropout技术分析
深度学习Dropout技术分析 什么是Dropout? dropout是指在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃.注意是暂时,对于随机梯度下降来说,由于是随机 ...
- Weka关联规则分析
购物篮分析: Apriori算法: 参数设置: 1.car 如果设为真,则会挖掘类关联规则而不是全局关联规则. 2. classindex 类属性索引.如果设置为-1,最后的属性被当做类属性. 3. ...
随机推荐
- springboot微服务的简单小结
springboot微服务的简单小结 近来公司用springboot微服务,所以小结一下. 基础: 什么是SpingBoot微服务? 如何创建SpringBoot微服务? 如何管理和完善SpringB ...
- 树链剖分【p2590】[ZJOI2008]树的统计
Description 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w. 我们将以下面的形式来要求你对这棵树完成一些操作: I. CHANGE u t : 把结点u的权值改为t II. ...
- 【poj2155】【Matrix】二位树状数组
[pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=34310873 Description Given ...
- 【bzoj2160】【啦啦队排练】manacher(马拉车)+差分+快速幂
[pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=34562780 向大(hei)佬(e)势力学(di ...
- C# 事件和Unity3D
http://zijan.iteye.com/blog/871207 翻译自: http://www.everyday3d.com/blog/index.php/2010/10/04/c-events ...
- 六. 异常处理5.多重catch语句的使用
某些情况,由单个代码段可能引起多个异常.处理这种情况,你可以定义两个或更多的catch子句,每个子句捕获一种类型的异常.当异常被引发时,每一个catch子句被依次检查,第一个匹配异常类型的子句执行.当 ...
- 基于Rebound制造绚丽的动画效果-入门篇
基于Rebound制造绚丽的动画效果-入门篇 Rebound是什么? Rebound是一个来自 Facebook 公司的 Java物理和动画库.Rebound spring 模型可用于创建动画,让你感 ...
- 一个简单功能的SQL 实现
1.假设有一张表示cj表 Name Subject Result 张三 语文 80 张三 数学 90 张三 物理 85 李四 语文 85 李四 数学 92 李四 物理 89 要求查询结果: 姓名 语文 ...
- [Android Traffic] 根据网络类型更改下载模式
转载自: http://blog.csdn.net/kesenhoo/article/details/7396321 Modifying your Download Patterns Based on ...
- util.string.js
ylbtech-JavaScript-util: util.string.js 字符串处理工具 1.A,JS-效果图返回顶部 1.B,JS-Source Code(源代码)返回顶部 1.B.1, ...