步骤:

(一) 选择数据源

(二)选择要分析的字段

(三)选择需要的关联规则算法

(四)点击start运行

(五) 分析结果

算法选择:

Apriori算法参数含义

1.car:如果设为真,则会挖掘类关联规则而不是全局关联规则。
2.classindex: 类属性索引。如果设置为-1,最后的属性被当做类属性。
3.delta: 以此数值为迭代递减单位。不断减小支持度直至达到最小支持度或产生了满足数量要求的规则。
4.lowerBoundMinSupport: 最小支持度下界。
5.metricType: 度量类型,设置对规则进行排序的度量依据。可以是:置信度(类关联规则只能用置信度挖掘),提升度(lift),杠杆率(leverage),确信度(conviction)。
在 Weka中设置了几个类似置信度(confidence)的度量来衡量规则的关联程度,它们分别是:
a)Lift : P(A,B)/(P(A)P(B)) Lift=1时表示A和B独立。这个数越大(>1),越表明A和B存在于一个购物篮中不是偶然现象,有较强的关联度.
b)Leverage :P(A,B)-P(A)P(B)
Leverage=0时A和B独立,Leverage越大A和B的关系越密切
c) Conviction:P(A)P(!B)/P(A,!B) (!B表示B没有发生) Conviction也是用来衡量A和B的独立性。从它和lift的关系(对B取反,代入Lift公式后求倒数)可以看出,这个值越大, A、B越关联。
6.minMtric :度量的最小值。
7.numRules: 要发现的规则数。
8.outputItemSets: 如果设置为真,会在结果中输出项集。
9.removeAllMissingCols: 移除全部为缺省值的列。
10.significanceLevel :重要程度。重要性测试(仅用于置信度)。
11.upperBoundMinSupport: 最小支持度上界。 从这个值开始迭代减小最小支持度。
12.verbose: 如果设置为真,则算法会以冗余模式运行。

FPgrowph决策树算法

FP的全称是Frequent Pattern,在算法中使用了一种称为频繁模式树(Frequent Pattern Tree)的数据结构。FP-tree是一种特殊的前缀树,由频繁项头表和项前缀树构成。FP-Growth算法基于以上的结构加快整个挖掘过程。

下一篇:

http://www.cnblogs.com/tomcattd/p/3478678.html

Weka学习之关联规则分析的更多相关文章

  1. 【集美大学1411_助教博客】个人作业2——英语学习APP案例分析 成绩

    个人作业2--英语学习APP案例分析,截止发稿时间全班31人,提交31,未提交0人.有一名同学已经写了作业但忘记提交了,这次给分了,但下不为例.由于助教这周有点忙,所以点评得非常不及时,请同学们见谅. ...

  2. ROS_Kinetic_29 kamtoa simulation学习与示例分析(一)

    致谢源代码网址:https://github.com/Tutorgaming/kamtoa-simulation kamtoa simulation学习与示例分析(一) 源码学习与分析是学习ROS,包 ...

  3. GIS案例学习笔记-水文分析河网提取地理建模

    GIS案例学习笔记-水文分析河网提取地理建模 联系方式:谢老师,135-4855-4328,xiexiaokui#qq.com 目的:针对数字高程模型,通过水文分析,提取河网 操作时间:25分钟 数据 ...

  4. Android:日常学习笔记(2)——分析第一个Android应用程序

    Android:日常学习笔记(2)——分析第一个Android应用程序 Android项目结构 整体目录结构分析 说明: 除了APP目录外,其他目录都是自动生成的.APP目录的下的内容才是我们的工作重 ...

  5. HashMap的源码学习以及性能分析

    HashMap的源码学习以及性能分析 一).Map接口的实现类 HashTable.HashMap.LinkedHashMap.TreeMap 二).HashMap和HashTable的区别 1).H ...

  6. Netty 源码学习——客户端流程分析

    Netty 源码学习--客户端流程分析 友情提醒: 需要观看者具备一些 NIO 的知识,否则看起来有的地方可能会不明白. 使用版本依赖 <dependency> <groupId&g ...

  7. (转载)微软数据挖掘算法:Microsoft 关联规则分析算法(7)

    前言 本篇继续我们的微软挖掘算法系列总结,前几篇我们分别介绍了:微软数据挖掘算法:Microsoft 决策树分析算法(1).微软数据挖掘算法:Microsoft 聚类分析算法(2).微软数据挖掘算法: ...

  8. 深度学习Dropout技术分析

    深度学习Dropout技术分析 什么是Dropout? dropout是指在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃.注意是暂时,对于随机梯度下降来说,由于是随机 ...

  9. Weka关联规则分析

    购物篮分析: Apriori算法: 参数设置: 1.car 如果设为真,则会挖掘类关联规则而不是全局关联规则. 2. classindex 类属性索引.如果设置为-1,最后的属性被当做类属性. 3. ...

随机推荐

  1. Apache优化建议

    Apache是Web服务器软件,它最常见是搭配PHP开发语言去使用.今天,小编根据Apache官方手册再结合实际,整理出下面这些优化建议,希望对大家的Apache服务器的运行效率有效果. 1.控制Ma ...

  2. Linux查看某个进程的磁盘IO读写情况

    说明: 1.Linux下没有原生的查看IO的软件,只能额外装. 2.如果使用vmstat或者cat /proc/$PID/io,这些看的都太复杂了. 下面是安装的比较直观的软件: 1.iostat 这 ...

  3. java随机生成字符串(字符随机生成类 生成随机字符组合)

    原文:http://www.jb51.net/article/45006.htm package p2p_web; import java.util.ArrayList; import java.ut ...

  4. Http标准协议Android网络框架——NoHttp

    NoHttp详细文档:http://doc.nohttp.net NoHttp公益测试接口:http://api.nohttp.net 支持与RxJava完美结合.支持一句话切换底层为OkHttp,支 ...

  5. C# 窗体位置 Show和ShowDialog (转载)

    CenterParent                     窗体在其父窗体中居中.       CenterScreen                    窗体在当前显示窗口中居中,其尺寸在 ...

  6. ASP.NET MVC学习---(九)权限过滤机制(完结篇)

    相信对权限过滤大家伙都不陌生 用户要访问一个页面时 先对其权限进行判断并进行相应的处理动作 在webform中 最直接也是最原始的办法就是 在page_load事件中所有代码之前 先执行一个权限判断的 ...

  7. linux中grep命令

    grep 是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹配的行打印出来. grep常用用法 [root@www ~]# grep [-acinv] [--color=auto] '搜寻字 ...

  8. cmd.exe启动参数说明

    启动命令解释程序 Cmd.exe 的新范例.如果在不含参数的情况下使用,cmd 将显示操作系统的版本和版权信息. 语法 cmd [{/c | /k}] [/s] [/q] [/d] [{/a | /u ...

  9. 10. 修改端口号【从零开始学Spring Boot】

    转载:http://blog.csdn.net/linxingliang/article/details/51637017 spring boot 默认端口是8080,如果想要进行更改的话,只需要修改 ...

  10. 屏蔽NumberPicker点击可输入问题

    1.xml布局中添加属性:Android:descendantFocusability="blocksDescendants" 2.代码中设置:numberPicker.setDe ...