【0】README

0.1) 本文总结于 数据结构与算法分析, 源代码均为原创, 旨在理解 Dijkstra 的思想并用源代码加以实现;

0.2)最短路径算法的基础知识,参见 http://blog.csdn.net/pacosonswjtu/article/details/49894021

0.3) Dijkstra算法 涉及到的 优先队列的操作实现(该优先队列的数据类型不是 int , 而是 Distance),详情参见 http://blog.csdn.net/pacosonswjtu/article/details/49923389


【1】Dijkstra 算法相关

1.1)贪婪算法一般分阶段去求解一个问题, 在每个阶段它都把当前出现的当做是最好的去处理:

  • 1.1.1)贪婪算法荔枝(使用最少数目的纸币找零钱):

    说找零钱, 大部分人首先数出面值1元的纸币,然后是面值5角的纸币、2角的纸币、1角的纸币等等;这种贪婪算法使用最少数目的纸币找零钱;
  • 1.1.2)贪婪算法的主要问题: 该算法不能总是成功,为了找还15角的零钱,如添加面值1元2角的纸币(这仅仅是举例说明)可破坏这种找零钱算法, 因为此时它给出的答案(一个面值1元2角的纸币+1个面值2角的纸币+一个面值1角的纸币3个)不是最优的(1个面值1元的纸币+1个面值5角的纸币2个);

1.2)Dijkstra 算法:解决单源最短路径问题的一般方法叫做 Dijkstra算法, 它的解法是贪婪算法最好的例子;

  • 1.2.1) Dijkstra 算法像无权最短路径算法一样, 按阶段进行;在每个阶段, 该算法选择一个顶点v, 它在所有未知顶点中具有最小的dv, 同时算法声明从s到v的最短路径是已知的。阶段的其余工作由dw值的更新工作组成;
  • 1.2.2)利用反证法证明得到, 只要没有边的值为负, 该算法总能够顺利完成,如果任何一边出现负值, 则算法可能得出错误的答案;
  • 1.2.3) Dijkstra算法描述(转自天勤计算机考研高分笔记——数据结构)

    设有两个顶点集合S 和 T, 集合S中存放图中已找到最短路径的顶点,集合T存放图中剩余顶点。初始状态时, 集合S 中只包含源点V0, 然后不断从集合T中选取到顶点V0 路径长度最短的顶点Vu 并将其并入到集合S中。集合S每并入一个新的顶点Vu, 都要修改顶点V0到 集合T中顶点的最短路径长度值。不断重复这个过程, 直到集合T的顶点全部并入到 S中为止;

Attention)在理解“集合S每并入一个新的顶点Vu,都要修改顶点V0到集合T中顶点的最短路径长度值”的时候需要注意:

  • A1)在Vu被选入S中后, Vu被确定为最短路径上的顶点, 此时Vu就像V0到达T中顶点的中转站 ,多了一个中转站, 就会多一些达到T中顶点的新路径,而这些新路径有可能比之前V0到T中顶点的路径还要短,因此需要修改原有V0到T中其他顶点的路径长度。此时对于T中的一个顶点Vk, 有两种情况:一种是V0不经过Vu 到达Vk的路径长度为a, 另一个是V0经过Vu到达Vk的长度为b。 如果a<=b, 则什么也不做;如果 a>b , 则用b来代替a。 用同样的方法处理T中其他顶点, 当T中所有顶点都被处理完后, 会出现一组新的 V0到T中各个顶点的路径,这些路径中有一条最短的, 对应了T中一个顶点, 就是新的 Vu, 将其并入S。重复上述过程, 最后T中所有的顶点都会被并入到S中, 此时就可以得到 V0到图中所有顶点的最短路径;

【2】Dijkstra算法实现

2.1)图是稠密的: 通过使用扫描表来找出最小值dv, 那么每一步将花费 O(|V|)时间找到最小值, 从而整个算法过程将花费 O(|V|^2)时间查找最小值;每次更新dw的时间是常数, 而每条边最多有一次更新,总计为 O(|E|),因此总的运行时间为

O(|E| + |V|)=O(|V|^2);

2.2)图是稀疏的:边数 |E|=Θ(|V|) , 那么扫描法就太慢了,不适用于稀疏图;

  • 2.2.1)一种处理方法是把更新处理成 DecreaseKey 操作: 此时, 查找最小值的时间为 O(log|V|), 即为执行那些更新的时间, 它相当于执行那些 DecreaseKey操作的时间。由此得出运行时间为 O(|E|log|V| + |V|log|V|)=O(|E|log|V|),它是对前面稀疏图的界的改进;由于优先队列不是有效地支持 Find操作, 由此 di 的每个值在优先队列的位置将需要保留并当 di 在优先队列中改变时更新。如果优先队列使用二叉堆实现的 话,那么将会很难办;如果使用配对堆(pairing heap, 见第12章),则程序不会太差;
  • 2.2.2)另一种方法是在每次执行第9行时把w和新值dw插入到优先队列中去。(这里仅仅提供了一个idea,可以不去细究,因为Solution多种多样)这样,在优先队列中的每个顶点就可能有多于一个的代表。当 DeleteMin操作吧最小的顶点从优先队列中删除时, 必须检查以肯定它不是已经知道的。这种方法虽然从软件观点来看是优越的,而且编程容易得多,但是,队列的大小可能达到 |E| 那么大。由于|E| <= |V|^2 意味着 log|E| <=2log|V| , 因此这并不影响渐进时间界。这样,我们仍然得到一个O(|E|log|V|)算法。不过,空间需求的确增加了, 在某些应用中这可能是严重的。不仅如此, 因为该方法需要 |E| 次而不仅仅是 |V| 次 DeleteMin, 所以在实践中运行很慢;
  • 2.2.3)图在大多数情况下都是非常稀疏的:注意,对于一些诸如计算机邮件和大型公交传输的典型问题, 它们的图都是非常稀疏的, 因为大多数顶点只有少数几条边。因此,在许多应用中 使用优先队列来解决这种问题 是很重要的;
  • 2.2.4)使用斐波那契堆实现 Dijkstra算法, 如果使用不同的数据结构,那么 Dijkstra算法可能会有更好的时间界。我们将看到另外的优先队列数据结构,叫做斐波那契堆(Fibonacci heap)。使用这种数据结构的运行时间为 O(|E| + |V|log|V|)。斐波那契堆具有良好的 理论时间界,不过,它需要相当数量的系统开销。因此,尚不清楚在实践中是否使用 斐波那契堆比使用具有二叉堆的Dijkstra 算法更好;

【3】看个荔枝:




【4】source code + printing results

Attention)

  • A1)代码的打印结果 和 手动模拟结果做个比较,以验证我的代码可行性: 注意将我的打印结果和章节【3】中的“有权最短路径Dijkstra算法步骤解析”中的各个步骤的binary heap 和 table内容(存储在进行Dijkstra算法过程中的节点相关数据)做个比较,很直观地演示了 Dijkstra算法的步骤;
  • A2)出现的问题: 本源代码用到了 优先队列(二叉堆)来选取最小的 distance所在的vertex编号,很方便,不过有个问题就是,当起始顶点(我们这里是v1)到后面的邻接顶点比之前的邻接顶点还要小(章节【3】中的v3被声明为已知后,v6的Distance更新为8,就是这种情况),那么就需要更新优先队列里面的v6的distance(由9更新为8),但是优先队列对于 find 操作不是很有效。
  • A3)如何解决优先队列对find操作不是很有效的情况: 这里, 我们引入了另一个int类型的数组indexOfVertexInHeap who stores index of vertexs in heap and let every element be -1 initially;比如,v6存放在 heap的第5个位置上,那么 indexOfVertexInHeap[6]=5,对的,就是这样sample, 后面,我们需要更新 heap里面的某个vertex的distance,直接用 indexOfVertexInHeap 导出该vertex在heap中的位置,然后直接更新就可以了,Bingo!

4.1)download source code:

Dijkstra算法源代码(优先队列实现):https://github.com/pacosonTang/dataStructure-algorithmAnalysis/tree/master/chapter9/p228_dijkstra

4.2)source code at a glance(for complete code, please click given link above):

#include "dijkstra.h"

//allocate the memory for initializing unweighted table
WeightedTable *initWeightedTable(int size)
{
WeightedTable* table;
int i; table = (WeightedTable*)malloc(sizeof(WeightedTable) * size);
if(!table)
{
Error("out of space ,from func initWeightedTable");
return NULL;
} for(i = 0; i < size; i++)
{
table[i] = makeEmptyWeightedTable();
if(!table[i])
return NULL;
} return table;
} // allocate the memory for every element in unweighted table
WeightedTable makeEmptyWeightedTable()
{
WeightedTable element; element = (WeightedTable)malloc(sizeof(struct WeightedTable));
if(!element)
{
Error("out of space ,from func makeEmptyWeightedTable");
return NULL;
}
element->known = 0; // 1 refers to accessed , also 0 refers to not accessed
element->distance = MaxInt;
element->path = -1; // index starts from 0 and -1 means the startup vertex unreaches other vertexs return element;
} // allocate the memory for storing index of vertex in heap and let every element -1
int *makeEmptyArray(int size)
{
int *array;
int i; array = (int*)malloc(size * sizeof(int));
if(!array)
{
Error("out of space ,from func makeEmptyArray");
return NULL;
}
for(i=0; i<size; i++)
array[i] = -1; return array;
} //computing the unweighted shortest path between the vertex under initIndex and other vertexs
void dijkstra(AdjTable* adj, int size, int startVertex, BinaryHeap bh)
{
int adjVertex;
int tempDistance;
WeightedTable* table;
int vertex;
AdjTable temp;
Distance tempDisStruct;
int *indexOfVertexInHeap;
int indexOfHeap; table = initWeightedTable(size);
tempDisStruct = makeEmptyDistance();
indexOfVertexInHeap = makeEmptyArray(size); tempDisStruct->distance = table[startVertex-1]->distance;
tempDisStruct->vertexIndex = startVertex-1;
insert(tempDisStruct, bh, indexOfVertexInHeap); // insert the (startVertex-1) into the binary heap table[startVertex-1]->distance = 0;// update the distance
table[startVertex-1]->path = 0;// update the path of starting vertex while(!isEmpty(bh))
{
//vertex = deQueue(queue); // if the queue is not empty, conducting departing queue
vertex = deleteMin(bh)->vertexIndex; // return the minimal element in binary heap table[vertex]->known = 1; // update the vertex as accessed, also responding known 1
temp = adj[vertex]->next;
while(temp)
{
adjVertex = temp->index; // let each adjVertex adjacent to vertex enter the queue //enQueue(queue, adjVertex);
tempDistance = table[vertex]->distance + temp->weight; // update the distance
if(tempDistance < table[adjVertex]->distance)
{
table[adjVertex]->distance = tempDistance;
table[adjVertex]->path = vertex; //update the path of adjVertex, also responding path evaluated as vertex // key, we should judge whether adjVertex was added into the binary heap
//if true , obviously the element has been added into the binary heap(so we can't add the element into heap once again)
if(indexOfVertexInHeap[adjVertex] != -1)
{
indexOfHeap = indexOfVertexInHeap[adjVertex];
bh->elements[indexOfHeap]->distance = tempDistance; // update the distance of corresponding vertex in binary heap
}
else
{
tempDisStruct->distance = table[adjVertex]->distance;
tempDisStruct->vertexIndex = adjVertex;
insert(tempDisStruct, bh, indexOfVertexInHeap); // insert the adjVertex into the binary heap
}
}
temp = temp->next;
}
printDijkstra(table, size, startVertex);
printBinaryHeap(bh);
printf("\n");
} printf("\n");
} //print unweighted table
void printDijkstra(WeightedTable* table, int size, int startVertex)
{
int i;
char *str[4] =
{
"vertex",
"known",
"distance",
"path"
}; printf("\n\t === storage table related to Dijkstra alg as follows: === ");
printf("\n\t %6s%6s%9s%5s", str[0], str[1], str[2], str[3]);
for(i=0; i<size; i++)
{
if(i != startVertex-1 && table[i]->path!=-1)
printf("\n\t %-3d %3d %5d v%-3d ", i+1, table[i]->known, table[i]->distance, table[i]->path+1);
else if(table[i]->path == -1)
printf("\n\t %-3d %3d %5d %-3d ", i+1, table[i]->known, table[i]->distance, table[i]->path);
else
printf("\n\t *%-3d %3d %5d %-3d ", i+1, table[i]->known, table[i]->distance, 0);
}
} int main()
{
AdjTable* adj;
BinaryHeap bh;
int size = 7;
int capacity;
int i;
int j;
int column = 4;
int startVertex; int adjTable[7][4] =
{
{2, 4, 0, 0},
{4, 5, 0, 0},
{1, 6, 0, 0},
{3, 5, 6, 7},
{7, 0, 0, 0},
{0, 0, 0, 0},
{6, 0, 0, 0}
}; int weight[7][7] =
{
{2, 1, 0, 0},
{3, 10, 0, 0},
{4, 5, 0, 0},
{2, 2, 8, 4},
{6, 0, 0, 0},
{0, 0, 0, 0},
{1, 0, 0, 0}
}; printf("\n\n\t ====== test for dijkstra alg finding weighted shortest path from adjoining table ======\n");
adj = initAdjTable(size); printf("\n\n\t ====== the initial weighted adjoining table is as follows:======\n");
for(i = 0; i < size; i++)
for(j = 0; j < column; j++)
if(adjTable[i][j])
insertAdj(adj, adjTable[i][j]-1, i, weight[i][j]); // insertAdj the adjoining table over printAdjTable(adj, size); capacity = 7;
bh = initBinaryHeap(capacity+1);
//conducting dijkstra alg to find the unweighted shortest path starts
startVertex = 1; // you should know our index for storing vertex starts from 0
dijkstra(adj, size, startVertex, bh); return 0;
}

4.3)printing results:





Dijkstra 算法——计算有权最短路径(边有权值)的更多相关文章

  1. Dijkstra算法详细(单源最短路径算法)

    介绍 对于dijkstra算法,很多人可能感觉熟悉而又陌生,可能大部分人比较了解bfs和dfs,而对dijkstra和floyd算法可能知道大概是图论中的某个算法,但是可能不清楚其中的作用和原理,又或 ...

  2. dijkstra算法计算最短路径和并输出最短路径

    void dijisitela(int d, int m1) { ], book[], path[], u, v, min; l = ; ; i < n1; i++) { dis[i] = w[ ...

  3. Til the Cows Come Home(poj 2387 Dijkstra算法(单源最短路径))

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 32824   Accepted: 11098 Description Bes ...

  4. Dijkstra算法解决单源最短路径

    单源最短路径问题:给定一个带权有向图 G = (V, E), 其中每条边的权是一个实数.另外,还给定 V 中的一个顶点,称为源.现在要计算从源到其他所有各顶点的最短路径长度.这里的长度是指路上各边权之 ...

  5. 【转】Dijkstra算法(单源最短路径)

    原文:http://www.cnblogs.com/dolphin0520/archive/2011/08/26/2155202.html 单源最短路径问题,即在图中求出给定顶点到其它任一顶点的最短路 ...

  6. Dijkstra算法构造单源点最短路径

    迪杰斯特拉(Dijkstra)算法 是求从某个源点到其余各顶点的最短路径,即对已知图 G=(V,E),给定源顶点 s∈V,找出 s 到图中其它各顶点的最短路径. 我总结下核心算法,伪代码如下: Dij ...

  7. 单源最短路径Dijkstra算法,多源最短路径Floyd算法

    1.单源最短路径 (1)无权图的单源最短路径 /*无权单源最短路径*/ void UnWeighted(LGraph Graph, Vertex S) { std::queue<Vertex&g ...

  8. 【算法】Dijkstra算法(单源最短路径问题)(路径还原) 邻接矩阵和邻接表实现

    Dijkstra算法可使用的前提:不存在负圈. 负圈:负圈又称负环,就是说一个全部由负权的边组成的环,这样的话不存在最短路,因为每在环中转一圈路径总长就会边小. 算法描述: 1.找到最短距离已确定的顶 ...

  9. Dijkstra算法求单源最短路径

    Description 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店 ...

随机推荐

  1. 初学Django:创建第一个项目+使用模板

    1. 创建一个项目 之前在Anaconda 3里面用命令行安装了Django之后,有了可用的管理工具django-admin.py (1)用django.admin.py来创建一个项目Hellowor ...

  2. 用gulp+webpack构建多页应用——记一次Node多页应用的构建过程

    通过参考网上的一些构建方法,当然也在开发过程中进行了一番实践,最终搭建了一套适用于当前多页应用的构建方案,当然该方案还处于draft版本,会在后续的演进过程中不断的优化. 个人觉得该方案的演进过程相对 ...

  3. 2.IsoDep类

    IsoDep 类概述: Provides access to ISO-DEP (ISO 14443-4) properties and I/O operations on a Tag. Acquire ...

  4. SQL SERVER 内存学习系列

    http://www.cnblogs.com/double-K/p/5049417.html http://blog.sina.com.cn/s/blog_5deb2f5301014wti.html ...

  5. 【Git】windows上git命令中文乱码的问题

    windows上git命令中文乱码的问题解决 1.打开git bash快捷方式启动 2.右键 options 3.进入text选项卡,选中中文 和UTF-8 4.应用 测试[中文正常显示] 尝试打开文 ...

  6. 关于国内外CV领域牛人的博客链接 .

    此文为转载文章,尊重知识产权http://blog.csdn.net/carson2005/article/details/6601109此为原文链接,感谢作者! 以下链接是关于计算机视觉(Compu ...

  7. EffectiveJava(8)覆盖equals是要遵守的约定

    覆盖equals是要遵守的约定 1.覆盖种类: -类的每个1实例本质上都是唯一的 -不关心类是否提供了"逻辑相等"的测试功能(Random测试是否能随机相同数字) -超类已经覆盖了 ...

  8. Android学习(十二) ContentProvider

    一.ContentProvider简介       当应用继承ContentProvider类,并重写该类用于提供数据和存储数据的方法,就可以向其他应用共享其数据.虽然使用其他方法也可以对外共享数据, ...

  9. vue-router $route

    1.$route 除了 $route.params 外,$route 对象还提供了其它有用的信息,例如,$route.query (如果 URL 中有查询参数).$route.hash 等等

  10. BaseAdapter的使用(笔记)

    适配器模式的应用: 1.减少程序耦合性 2.easy扩展 BaseAdapter ListView的显示与缓存机制:须要才显示,显示完就被会受到缓存. BaseAdapter基本结构 --public ...