Let's say we have two strings:

str1 = 'ACDEB'

str2 = 'AEBC'

We need to find the longest common subsequence, which in this case should be 'AEB'.

Using dynamic programming, we want to compare by char not by whole words.

  • we need memo to keep tracking the result which have already been calculated

    •   memo is 2d array, in this case is 5 * 4 array.
  • It devided problem into two parts
    •   If the char at the given indexs for both strings are the same, for example, 'A' for str1 & str2, then we consider
'A' + LSC(str1, str2, i1 + 1, i2 + 1)
    • If the char at the given indexs are not the same, we pick max length between LCB('DEB', 'EBC') & LCB('CDEB', 'BC'),  we pick
Max {
LCS('DEB', 'EBC'),
LCS('CDEB', 'BC')
}

Bacislly for the str1 = 'CDEB' str2 = 'EBC', the first char is not the same, one is 'C', another is 'E', then we devide into tow cases and get the longer one. The way to devide is cutting 'C' from str1 get LCS('DEB', 'EBC'), and cutting 'E' from str2 get LCS('CDEB', 'BC').

 /**
* FIND THE LONGEST COMMON SEQUENCES BY USING DYNAMICE PROGRAMMING
*
* @params:
* str1: string
* str2: string
* i1: number
* i2: number
* memo: array []
*
* TC: O(L*M) << O(2^(L*M))
*/ function LCS(str1, str2) {
const memo = [...Array(str1.length)].map(e => Array(str2.length)); /**
* @return longest common sequence string
*/
function helper(str1, str2, i1, i2, memo) {
console.log(`str1, str2, ${i1}, ${i2}`);
// if the input string is empty
if (str1.length === i1 || str2.length === i2) {
return "";
}
// check the memo, whether it contians the value
if (memo[i1][i2] !== undefined) {
return memo[i1][i2];
}
// if the first latter is the same
// "A" + LCS(CDEB, EBC)
if (str1[i1] === str2[i2]) {
memo[i1][i2] = str1[i1] + helper(str1, str2, i1 + 1, i2 + 1, memo);
return memo[i1][i2];
} // Max { "C" + LCS(DEB, EBC), "E" + LCB(CDEB, BC) }
let result;
const resultA = helper(str1, str2, i1 + 1, i2, memo); // L
const resultB = helper(str1, str2, i1, i2 + 1, memo); // M if (resultA.length > resultB.length) {
result = resultA;
} else {
result = resultB;
} memo[i1][i2] = result;
return result;
} return {
result: helper(str1, str2, 0, 0, memo),
memo
};
} //const str1 = "I am current working in Finland @Nordea",
//str2 = "I am currently working in Finland at Nordea"; const str1 = "ACDEB",
str2 = "GAEBC"; const { result, memo } = LCS(str1, str2);
console.log(
`
${str1}
${str2}
's longest common sequence is
"${result === "" ? "Empty!!!" : result}"
`
); console.log(memo);

----

Bottom up solution can be:

1. Init first row and first col value to zero

2. Then loop thought the data, If row latter and col latter is not the same, then take which is larger Max {the previous row same col value data[row-1][col], same row but previous col data[row][col-1]}

3. If they are the same, take data[row-1][col-1] + 1.

Source, Code

[Algorithms] Using Dynamic Programming to Solve longest common subsequence problem的更多相关文章

  1. Dynamic Programming | Set 4 (Longest Common Subsequence)

    首先来看什么是最长公共子序列:给定两个序列,找到两个序列中均存在的最长公共子序列的长度.子序列需要以相关的顺序呈现,但不必连续.例如,"abc", "abg", ...

  2. Dynamic Programming | Set 3 (Longest Increasing Subsequence)

    在 Dynamic Programming | Set 1 (Overlapping Subproblems Property) 和 Dynamic Programming | Set 2 (Opti ...

  3. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  4. [Algorithms] Longest Common Subsequence

    The Longest Common Subsequence (LCS) problem is as follows: Given two sequences s and t, find the le ...

  5. 1143. Longest Common Subsequence

    link to problem Description: Given two strings text1 and text2, return the length of their longest c ...

  6. 2017-5-14 湘潭市赛 Longest Common Subsequence 想法题

    Longest Common Subsequence Accepted : Submit : Time Limit : MS Memory Limit : KB Longest Common Subs ...

  7. 最长公共字串算法, 文本比较算法, longest common subsequence(LCS) algorithm

    ''' merge two configure files, basic file is aFile insert the added content of bFile compare to aFil ...

  8. 【牛客网】Longest Common Subsequence

    [牛客网]Longest Common Subsequence 发现只有d数组最格路 于是我们把前三个数组中相同的数记成一个三维坐标,同一个数坐标不会超过8个 从前往后枚举d,每次最多只会更新不超过8 ...

  9. LintCode Longest Common Subsequence

    原题链接在这里:http://www.lintcode.com/en/problem/longest-common-subsequence/ 题目: Given two strings, find t ...

随机推荐

  1. Download RPM packages from a YUM repo without installing

    This how-to will explain how to download rpm packages from a yum repository without installing them. ...

  2. ARM嵌入式开发中的GCC内联汇编__asm__

    在针对ARM体系结构的编程中,一般很难直接使用C语言产生操作协处理器的相关代码,因此使用汇编语言来实现就成为了唯一的选择.但如果完全通过汇编代码实现,又会过于复杂.难以调试.因此,C语言内嵌汇编的方式 ...

  3. 用VS2010编写的C++程序,在其他电脑上无法运行的问题

    问题:在自己电脑上用VS2010编写的VC++程序(使用MFC库),不能在其他电脑上运行.双击提示: “无法启动此程序,因为计算机中丢失mfc100u.dll 尝试重新安装该程序以解决此问题. 解决方 ...

  4. gvim设置使用

    最近有一款编辑器叫sublimeText 2比较流行,我也下载用了一下,确实很好看,自动完成,缩进功能什么的也比较齐全,插件也十分丰富.但用起来不是很顺手,最后还是回到了Gvim(Vim的GUI版本, ...

  5. java IO的字节流和字符流及其区别

    1. 字节流和字符流的概念    1.1 字节流继承于InputStream    OutputStream,    1.2 字符流继承于InputStreamReader    OutputStre ...

  6. (二十七)Linux的inode的理解

    一.inode是什么? 理解inode,要从文件储存说起. 文件储存在硬盘上,硬盘的最小存储单位叫做"扇区"(Sector).每个扇区储存512字节(相当于0.5KB). 操作系统 ...

  7. java实现MQ消息收发两种方式

    定义: 消息队列(MQ)是一种应用程序对应用程序的通信方法.应用程序通过写和检索出入列队的针对应用程序的数据(消息)来通信,而无需专用连接来链接它们.简单理解:蓝牙配对 jar包依赖: <!-- ...

  8. python描述符的应用

    使用描述符为python实现类型检测 class Typed: def __get__(self, instance, owner): print(instance) print(owner) def ...

  9. Profile 的翻译

    最近要翻译一个英文网站的单词,正宗的英文网站总是有很多单词让我烦恼,这就是其中一个. 特地转一篇文章,对我大有帮助. 计算机中常用的 Profile 该如何理解? 我认为 Profile 即可作名词又 ...

  10. hdu 畅通工程系列题目

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1232 并查集水. #include <stdio.h> #include <iost ...