bzoj 4407 于神之怒加强版 (反演+线性筛)
于神之怒加强版
Time Limit: 80 Sec Memory Limit: 512 MB
Submit: 1184 Solved: 535
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
3 3
Sample Output
HINT
1<=N,M,K<=5000000,1<=T<=2000
Source
#include<bits/stdc++.h>
#pragma GCC optimize(2)
#pragma G++ optimize(2)
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstring> #define ll long long
#define inf 1000000000
#define mod 1000000007
#define N 5000007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int F[N],f[N],flag[N],k,tot,p[N],ans;
inline int gpow(int x,int y)
{
int ans=;
while (y)
{
if (y&) ans=(ll)ans*x%mod;
y>>=;x=(ll)x*x%mod;
}
return ans;
}
void preparation()
{
F[]=;
for (int i=;i<N;i++)
{
if (!flag[i]){f[i]=gpow(i,k);F[i]=f[i]-;p[++tot]=i;}
for (int j=;j<=tot&&i*p[j]<N;j++)
{
flag[i*p[j]]=;
if (i%p[j])F[i*p[j]]=(ll)F[i]*F[p[j]]%mod;
else{F[i*p[j]]=(ll)F[i]*f[p[j]]%mod;break;}
}
}
for (int i=;i<N;i++) (F[i]+=F[i-])%=mod;
}
int main()
{
int Case=read();k=read();
preparation();
while (Case--)
{
int n=read(),m=read();if (n>m) swap(n,m);ans=;
for (int i=,pos=;i<=n;i=pos+)
{
pos=min(n/(n/i),m/(m/i));
(ans+=1LL*(n/i)*(m/i)%mod*(F[pos]-F[i-])%mod)%=mod;
}
printf("%d\n",(ans+mod)%mod);
}
return ;
}
bzoj 4407 于神之怒加强版 (反演+线性筛)的更多相关文章
- bzoj 4407 于神之怒加强版 —— 反演+筛积性函数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4407 推导如这里:https://www.cnblogs.com/clrs97/p/5191 ...
- bzoj 4407 于神之怒加强版——反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4407 \( ans = \sum\limits_{D=1}^{min(n,m)}\frac{ ...
- BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1067 Solved: 494[Submit][Status][Disc ...
- bzoj 4407: 于神之怒加强版【莫比乌斯反演+线性筛】
看着就像反演,所以先推式子(默认n<m): \[ \sum_{d=1}^{n}d^k\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d] \] \[ =\sum_{d=1} ...
- BZOJ.4407.于神之怒加强版(莫比乌斯反演)
题目链接 Description 求\[\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^K\ \mod\ 10^9+7\] Solution 前面部分依旧套路. \[\begin{ ...
- ●BZOJ 4407 于神之怒加强版
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4407 题解: 莫比乌斯反演 直接套路化式子 $\begin{align*}ANS&= ...
- bzoj 3309 DZY Loves Math——反演+线性筛
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 像这种数据范围,一般是线性预处理,每个询问 sqrt (数论分块)做. 先反演一番.然 ...
- BZOJ 4407: 于神之怒加强版 [莫比乌斯反演 线性筛]
题意:提前给出\(k\),求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m gcd(i,j)^k\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d|D ...
- BZOJ 4407: 于神之怒加强版 莫比乌斯反演 + 线筛积性函数
Description 给下N,M,K.求 Input 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意 ...
随机推荐
- Guava Cache 工具类 [ GuavaCacheUtil ]
pom.xml <dependency> <groupId>com.google.guava</groupId> <artifactId>guava&l ...
- ethereum(以太坊)(六)--整型(int)
pragma solidity ^0.4.20; /* uint8 uint16 ...uint256 int8 int16 int24 ..int256 uint => uint256 int ...
- <Docker学习>3. docker镜像命令使用
镜像提供容器运行时所需要的程序,资源.配置文件等,是一个特殊的文件系统.是容器运行的基础.镜像是多层文件系统组成的,是一个分层存储的架构,在镜像的构建中,会一层层的构建,每一层构建完成就不会发生改变, ...
- python学习之数据类型与运算符号
python版本:3.6 python编辑器:pycharm 最新版本 整理成代码如下: #!/usr/bin/env python #-*- coding: utf-8 -*- # 数学操作符 pr ...
- 把SmartForm转换成PDF
摘要:将SmartForm转换为PDF的过程包括3个简单步骤. 调用智能窗体,然后返回OTF数据. 使用“转换”功能模块将OTF数据转换为所需格式. 下载文件 呈现宏“code”时出错:为参数“lan ...
- Apache 设置二级域名
开启重写模块 LoadModule rewrite_module modules/mod_rewrite.so 编辑配置 NameVirtualHost *:80 <VirtualHost *: ...
- Java-数据结构之二叉树练习
本来这个随笔应该在4月17号就应该发出来的.不巧的是,那天晚上收到了offer,然后接下去两天为入职到处跑,20号入职后一直忙,直到最近几天才有时间看看书.然而20多天前就看完的了二叉树,然后17号那 ...
- java前台传参json,后台用map或者实体对象接收
(一)前台传js对象,里面包含数组,后台用map接收 (1)第一种情况:数组里不包含js对象 var param ={}: param.id=id; param.name=name; var scor ...
- BitLocker:如何启用网络解锁
TechNet 库Windows ServerWindows Server 2012 R2 和 Windows Server 2012服务器角色和技术安全和保护BitLockerBitLocker 中 ...
- Android通过用代码画虚线椭圆边框背景来学习一下shape的用法
在Android程序开发中,我们经常会去用到Shape这个东西去定义各种各样的形状,shape可以绘制矩形环形以及椭圆,所以只需要用椭圆即可,在使用的时候将控件比如imageview或textview ...