bzoj1185 [HNOI2007]最小矩形覆盖 旋转卡壳求凸包
[HNOI2007]最小矩形覆盖
Time Limit: 10 Sec Memory Limit: 162 MBSec Special Judge
Submit: 2081 Solved: 920
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
1 4.00000
2.0000 1
3 0.0000
3.00000 6
6.0 3.0
Sample Output
3.00000 0.00000
6.00000 3.00000
3.00000 6.00000
0.00000 3.00000
HINT
Source
#pragma GCC optimize(2)
#pragma G++ optimize(2)
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstdio> #define eps 0.00000001
#define N 50007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,tot;
double ans=1e60;
struct P
{
double x,y;
P(){}
P(double _x,double _y):x(_x),y(_y){}
friend bool operator<(P a,P b){return fabs(a.y-b.y)<eps?a.x<b.x:a.y<b.y;}
friend bool operator==(P a,P b){return fabs(a.x-b.x)<eps&&fabs(a.y-b.y)<eps;}
friend bool operator!=(P a,P b){return !(a==b);}
friend P operator+(P a,P b){return P(a.x+b.x,a.y+b.y);}
friend P operator-(P a,P b){return P(a.x-b.x,a.y-b.y);}
friend double operator*(P a,P b){return a.x*b.y-a.y*b.x;}
friend P operator*(P a,double b){return P(a.x*b,a.y*b);}
friend double operator/(P a,P b){return a.x*b.x+a.y*b.y;}
friend double dis(P a){return sqrt(a.x*a.x+a.y*a.y);}
}p[N],q[N],t[]; bool cmp(P a,P b)
{
double t=(a-p[])*(b-p[]);
if(fabs(t)<eps)return dis(p[]-a)-dis(p[]-b)<;
return t>;
}
void Graham()
{
for (int i=;i<=n;i++)
if(p[i]<p[])swap(p[i],p[]);
sort(p+,p+n+,cmp);
q[++tot]=p[];
for (int i=;i<=n;i++)
{
while(tot>&&(q[tot]-q[tot-])*(p[i]-q[tot])<eps)tot--;
q[++tot]=p[i];
}
q[]=q[tot];//凸包是一个回路。
}
void RC()
{
int l=,r=,p=;
double L,R,D,H;
for (int i=;i<tot;i++)
{
D=dis(q[i]-q[i+]);
while((q[i+]-q[i])*(q[p+]-q[i])-(q[i+]-q[i])*(q[p]-q[i])>-eps)p=(p+)%tot;
while((q[i+]-q[i])/(q[r+]-q[i])-(q[i+]-q[i])/(q[r]-q[i])>-eps)r=(r+)%tot;
if(i==)l=r;
while((q[i+]-q[i])/(q[l+]-q[i])-(q[i+]-q[i])/(q[l]-q[i])<eps)l=(l+)%tot;
L=(q[i+]-q[i])/(q[l]-q[i])/D,R=(q[i+]-q[i])/(q[r]-q[i])/D;
H=(q[i+]-q[i])*(q[p]-q[i])/D;
if(H<)H=-H;
double tmp=(R-L)*H;
if(tmp<ans)
{
ans=tmp;
t[]=q[i]+(q[i+]-q[i])*(R/D);
t[]=t[]+(q[r]-t[])*(H/dis(t[]-q[r]));
t[]=t[]-(t[]-q[i])*((R-L)/dis(q[i]-t[]));
t[]=t[]-(t[]-t[]);
}
}
}
int main()
{
n=read();
for (int i=;i<=n;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
Graham();
RC();
printf("%.5lf\n",ans);
int fir=;
for (int i=;i<=;i++)
if(t[i]<t[fir])fir=i;
for (int i=;i<=;i++)
printf("%.5lf %.5lf\n",t[(i+fir)%].x,t[(i+fir)%].y);
}
bzoj1185 [HNOI2007]最小矩形覆盖 旋转卡壳求凸包的更多相关文章
- 洛谷 P3187 BZOJ 1185 [HNOI2007]最小矩形覆盖 (旋转卡壳)
题目链接: 洛谷 P3187 [HNOI2007]最小矩形覆盖 BZOJ 1185: [HNOI2007]最小矩形覆盖 Description 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形, ...
- BZOJ 1185: [HNOI2007]最小矩形覆盖 [旋转卡壳]
1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 1435 Solve ...
- 【bzoj1185】[HNOI2007]最小矩形覆盖 (旋转卡壳)
给你一些点,让你用最小的矩形覆盖这些点 首先有一个结论,矩形的一条边一定在凸包上!!! 枚举凸包上的边 用旋转卡壳在凸包上找矩形另外三点... 注意精度问题 #include<cstdio> ...
- BZOJ 1185: [HNOI2007]最小矩形覆盖-旋转卡壳法求点集最小外接矩形(面积)并输出四个顶点坐标-备忘板子
来源:旋转卡壳法求点集最小外接矩形(面积)并输出四个顶点坐标 BZOJ又崩了,直接贴一下人家的代码. 代码: #include"stdio.h" #include"str ...
- bzoj 1185 [HNOI2007]最小矩形覆盖——旋转卡壳
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1185 矩形一定贴着凸包的一条边.不过只是感觉这样. 枚举一条边,对面的点就是正常的旋转卡壳. ...
- BZOJ1185[HNOI2007] 最小矩形覆盖(旋转卡壳)
BZOJ1185[HNOI2007] 最小矩形覆盖 题面 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形,输出所求矩形的面积和四个顶点的坐标 分析 首先可以先求凸包,因为覆盖了凸包上的顶点,凸 ...
- BZOJ1185 [HNOI2007]最小矩形覆盖 【旋转卡壳】
题目链接 BZOJ1185 题解 最小矩形一定有一条边在凸包上,枚举这条边,然后旋转卡壳维护另外三个端点即可 计算几何细节极多 维护另外三个端点尽量不在这条边上,意味着左端点尽量靠后,右端点尽量靠前, ...
- 2018.10.18 bzoj1185: [HNOI2007]最小矩形覆盖(旋转卡壳)
传送门 不难看出最后的矩形一定有一条边与凸包某条边重合. 因此先求出凸包,然后旋转卡壳求出当前最小矩形面积更新答案. 代码: #include<bits/stdc++.h> #define ...
- 【洛谷 P3187】 [HNOI2007]最小矩形覆盖 (二维凸包,旋转卡壳)
题目链接 嗯,毒瘤题. 首先有一个结论,就是最小矩形一定有条边和凸包重合.脑补一下就好了. 然后枚举凸包的边,用旋转卡壳维护上顶点.左端点.右端点就好了. 上顶点用叉积,叉积越大三角形面积越大,对应的 ...
随机推荐
- Wordpress网站中添加百度统计代码
百度统计是流量分析平台,帮助收集网站访问数据,提供流量趋势.来源分析.转化跟踪.页面热力图.访问流等多种统计分析服务,同时与百度搜索.百度推广.云服务无缝结合,为网站的精细化运营决策提供数据支持,进而 ...
- Python学习之登陆认证
需求: 让用户输入用户名密码 认证成功后显示欢迎信息 输错三次后退出程序 可以支持多个用户登录 (提示,通过列表存多个账户信息) 用户3次认证失败后,退出程序,再次启动程序尝试登录时,还是锁定状态(提 ...
- 侯捷《C++面向对象开发》——动手实现自己的复数类
前言 最近在看侯捷的一套课程<C++面向对象开发>,刚看完第一节introduction之后就被疯狂圈粉.感觉侯捷所提及所重视的部分也正是我一知半解的知识盲区,我之前也写过一些C++面向对 ...
- 命名空间“Microsoft.Office”中不存在类型或命名空间名称“Interop”(是否缺少程序集引用?
在一个web项目中需要导出word打印,引用Microsoft.Office.Interop.Word后,在pages里使用正常,在app_code里新建类引用就报错. Report.cs里using ...
- 10.1.2 Document类型【JavaScript高级程序设计第三版】
JavaScript 通过Document 类型表示文档.在浏览器中,document 对象是HTMLDocument(继承自Document 类型)的一个实例,表示整个HTML 页面.而且,docu ...
- Linux下 VI 编辑器操作
VI编辑器的三种模式:命令模式.输入模式.末行模式. 1.命令模式:vi启动后默认进入的是命令模式,从这个模式使用命令可以切换到另外两种模式,同时无论在何种模式下,[Esc]键都可以回到命令模式.在命 ...
- POJ:3104-Drying(神奇的二分)
Drying Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 20586 Accepted: 5186 Description I ...
- User_Authentication_Personalization Model
花了一天时间实现了一个 简单的用户登录验证的小模型. 基本实现了现在 用户登录模块的绝大多数功能, 也算是 熟悉了一下系统的逻辑. 在这个小模型中, 实现了以下的基本功能 : Logging in a ...
- adb 显示手机分辨率
adb shell dumpsys window | grep "ShownFrame" | head -n 1 adb shell dwm size 当然,作为一个Android ...
- windows系统如何查看某个端口被谁占用
1.开始---->运行---->cmd,或者是window+R组合键,调出命令窗口 2.输入命令:netstat -ano,列出所有端口的情况.在列表中我们观察被占用的端口,比如是135, ...